Skip to main content

Advertisement

Log in

Changes in Reward after Gastric Bypass: the Advantages and Disadvantages

  • Lipid and Metabolic Effects of Gastrointestinal Surgery (R Cohen, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Gastric bypass surgery is an effective long-term weight loss intervention. Key to its success appears a putative shift in food preference away from high-energy-density foods associated with a reduced appetitive drive and loss of neural reactivity in the reward system of the brain towards food. Post-prandial exaggerated satiety gut hormone responses have been implicated as mediators. Whilst the positive impact of bariatric surgery on both physical and psychological outcomes for many patients is clearly evident, a subset of patients appear to be detrimentally affected by this loss of reward from food and by a lack of alternative strategies for regulating affect after surgery. Mindfulness training has emerged as a potential tool in reducing the need for immediate reward that underpins much of eating behaviour. Further research is needed to help identify patients who may be more vulnerable after gastric bypass and which forms of support may be most beneficial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berthoud HR. The neurobiology of food intake in an obesogenic environment. Proc Nutr Soc. 2012;71(4):478–87.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Cornier MA, Salzberg AK, Endly DC, Bessesen DH, Rojas DC, Tregellas JR. The effects of overfeeding on the neuronal response to visual food cues in thin and reduced-obese individuals. PLoS One. 2009;4(7):e6310.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Porubska K, Veit R, Preissl H, Fritsche A, Birbaumer N. Subjective feeling of appetite modulates brain activity: an fMRI study. Neuroimage. 2006;32(3):1273–80.

    Article  PubMed  Google Scholar 

  4. Simmons WK, Martin A, Barsalou LW. Pictures of appetizing foods activate gustatory cortices for taste and reward. Cereb Cortex. 2005;15(10):1602–8.

    Article  PubMed  Google Scholar 

  5. Uher R, Treasure J, Heining M, Brammer MJ, Campbell IC. Cerebral processing of food-related stimuli: effects of fasting and gender. Behav Brain Res. 2006;169(1):111–9.

    Article  CAS  PubMed  Google Scholar 

  6. LaBar KS, Gitelman DR, Parrish TB, Kim YH, Nobre AC, Mesulam MM. Hunger selectively modulates corticolimbic activation to food stimuli in humans. Behav Neurosci. 2001;115(2):493–500.

    Article  CAS  PubMed  Google Scholar 

  7. Killgore WD, Young AD, Femia LA, Bogorodzki P, Rogowska J, Yurgelun-Todd DA. Cortical and limbic activation during viewing of high- versus low-calorie foods. Neuroimage. 2003;19(4):1381–94.

    Article  PubMed  Google Scholar 

  8. St-Onge MP, Sy M, Heymsfield SB, Hirsch J. Human cortical specialization for food: a functional magnetic resonance imaging investigation. J Nutr. 2005;135(5):1014–8.

    CAS  PubMed  Google Scholar 

  9. Schur EA, Kleinhans NM, Goldberg J, Buchwald D, Schwartz MW, Maravilla K. Activation in brain energy regulation and reward centers by food cues varies with choice of visual stimulus. Int J Obes (Lind). 2009;33(6):653–61.

    Article  CAS  Google Scholar 

  10. Goldstone AP. The hypothalamus, hormones, and hunger: alterations in human obesity and illness. Prog Brain Res. 2006;153:57–73.

    Article  CAS  PubMed  Google Scholar 

  11. Goldstone AP, Prechtl de Hernandez CG, Beaver JD, Muhammed K, Croese C, Bell G, et al. Fasting biases brain reward systems towards high-calorie foods. Eur J Neurosci. 2009;30:1625–35.

    Article  PubMed  Google Scholar 

  12. Goldstone AP, Prechtl de Hernandez CG, Scholtz S, Durighel G, Deliran SS, Wong T, et al. Ghrelin mimics fasting in biasing food appeal towards high-calorie foods. Obes Rev. 2010;11 Suppl 1:187.

    Google Scholar 

  13. Goldstone AP, Prechtl CG, Scholtz S, Miras AD, Chhina N, Durighel G, et al. Ghrelin mimics fasting to enhance human hedonic, orbitofrontal cortex, and hippocampal responses to food. Am J Clin Nutr. 2014;99(6):1319–30.

    Article  CAS  PubMed  Google Scholar 

  14. Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–37.

    Article  CAS  PubMed  Google Scholar 

  15. Sjostrom L, Narbro K, Sjostrom CD, Karason K, Larsson B, Wedel H, et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med. 2007;357(8):741–52.

    Article  PubMed  Google Scholar 

  16. Ochner CN, Stice E, Hutchins E, Afifi L, Geliebter A, Hirsch J, et al. Relation between changes in neural responsivity and reductions in desire to eat high-calorie foods following gastric bypass surgery. Neuroscience. 2012;209:128–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ochner CN, Kwok Y, Conceicao E, Pantazatos SP, Puma LM, Carnell S, et al. Selective reduction in neural responses to high calorie foods following gastric bypass surgery. Ann Surg. 2011;253(3):502–7.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Scholtz S, Miras AD, Chhina N, Prechtl CG, Sleeth ML, Daud NM, et al. Obese patients after gastric bypass surgery have lower brain-hedonic responses to food than after gastric banding. Gut. 2014;63(6):891–902.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Hankir MK, Ashrafian H, Hesse S, Horstmann A, Fenske WK. Distinctive striatal dopamine signaling after dieting and gastric bypass. Trends Endocrinol Metab. 2015;26(5):223–30.

    Article  CAS  PubMed  Google Scholar 

  20. Carnell S, Gibson C, Benson L, Ochner CN, Geliebter A. Neuroimaging and obesity: current knowledge and future directions. Obes Rev. 2012;13(1):43–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ziauddeen H, Farooqi IS, Fletcher PC. Obesity and the brain: how convincing is the addiction model? Nat Rev Neurosci. 2012;13(4):279–86.

    CAS  PubMed  Google Scholar 

  22. De Silva A, Salem V, Matthews PM, Dhillo WS. The use of functional MRI to study appetite control in the CNS. Exp Diabetes Res. 2012;2012:764017.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Lawrence NS, Hinton EC, Parkinson JA, Lawrence AD. Nucleus accumbens response to food cues predicts subsequent snack consumption in women and increased body mass index in those with reduced self-control. Neuroimage. 2012;63(1):415–22.

    Article  PubMed  Google Scholar 

  24. Grabenhorst F, Schulte FP, Maderwald S, Brand M. Food labels promote healthy choices by a decision bias in the amygdala. Neuroimage. 2013;74:152–63.

    Article  PubMed  Google Scholar 

  25. Van der Laan LN, De Ridder DT, Viergever MA, Smeets PA. Appearance matters: neural correlates of food choice and packaging aesthetics. PLoS One. 2012;7(7):e41738.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Demos KE, Heatherton TF, Kelley WM. Individual differences in nucleus accumbens activity to food and sexual images predict weight gain and sexual behavior. J Neurosci. 2012;32(16):5549–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Yokum S, Ng J, Stice E. Attentional bias to food images associated with elevated weight and future weight gain: an fMRI study. Obesity (Silver Spring). 2011;19(9):1775–83.

    Article  Google Scholar 

  28. Hare TA, Camerer CF, Rangel A. Self-control in decision-making involves modulation of the vmPFC valuation system. Science. 2009;324(5927):646–8.

    Article  CAS  PubMed  Google Scholar 

  29. McCaffery JM, Haley AP, Sweet LH, Phelan S, Raynor HA, Del Parigi A, et al. Differential functional magnetic resonance imaging response to food pictures in successful weight-loss maintainers relative to normal-weight and obese controls. Am J Clin Nutr. 2009;90(4):928–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Paolini BM, Laurienti PJ, Simpson SL, Burdette JH, Lyday RG, Rejeski WJ. Global integration of the hot-state brain network of appetite predicts short term weight loss in older adult. Front Aging Neurosci. 2015;7:70.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Coletta M, Platek S, Mohamed FB, van Steenburgh JJ, Green D, Lowe MR. Brain activation in restrained and unrestrained eaters: an fMRI study. J Abnorm Psychol. 2009;118(3):598–609.

    Article  PubMed  Google Scholar 

  32. Demos KE, Kelley WM, Heatherton TF. Dietary restraint violations influence reward responses in nucleus accumbens and amygdala. J Cogn Neurosci. 2011;23(8):1952–63.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Schur EA, Kleinhans NM, Goldberg J, Buchwald DS, Polivy J, Del Parigi A, et al. Acquired differences in brain responses among monozygotic twins discordant for restrained eating. Physiol Behav. 2012;105(2):560–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Geliebter A, Ladell T, Logan M, Schneider T, Sharafi M, Hirsch J. Responsivity to food stimuli in obese and lean binge eaters using functional MRI. Appetite. 2006;46(1):31–5.

    Article  PubMed  Google Scholar 

  35. Schienle A, Schafer A, Hermann A, Vaitl D. Binge-eating disorder: reward sensitivity and brain activation to images of food. Biol Psychiatry. 2009;65(8):654–61.

    Article  PubMed  Google Scholar 

  36. Farooqi IS, Bullmore E, Keogh J, Gillard J, O’Rahilly S, Fletcher PC. Leptin regulates striatal regions and human eating behavior. Science. 2007;317(5843):1355.

    Article  CAS  PubMed  Google Scholar 

  37. Schonberg T, Bakkour A, Hover AM, Mumford JA, Poldrack RA. Influencing food choices by training: evidence for modulation of frontoparietal control signals. J Cogn Neurosci. 2014;26(2):247–68.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Paolini B, Burdette JH, Laurienti PJ, Morgan AR, Williamson DA, Rejeski WJ. Coping with brief periods of food restriction: mindfulness matters. Front Aging Neurosci. 2012;4:13.

    Article  PubMed Central  PubMed  Google Scholar 

  39. van Bloemendaal L, RG IJ, Ten Kulve JS, Barkhof F, Konrad RJ, Drent ML, et al. GLP-1 receptor activation modulates appetite- and reward-related brain areas in humans. Diabetes. 2014;63(12):4186–96.

    Article  PubMed  Google Scholar 

  40. Batterham RL, ffytche DH, Rosenthal JM, Zelaya FO, Barker GJ, Withers DJ, et al. PYY modulation of cortical and hypothalamic brain areas predicts feeding behaviour in humans. Nature. 2007;450(7166):106–9.

    Article  CAS  PubMed  Google Scholar 

  41. Malik S, McGlone F, Bedrossian D, Dagher A. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab. 2008;7(5):400–9.

    Article  CAS  PubMed  Google Scholar 

  42. Sadry SA, Drucker DJ. Emerging combinatorial hormone therapies for the treatment of obesity and T2DM. Nat Rev Endocrinol. 2013;9(7):425–33.

    Article  CAS  PubMed  Google Scholar 

  43. Ochner CN, Laferrere B, Afifi L, Atalayer D, Geliebter A, Teixeira J. Neural responsivity to food cues in fasted and fed states pre and post gastric bypass surgery. Neurosci Res. 2012;74(2):138–43.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Ness A, Bruce J, Bruce A, Aupperle R, Lepping R, Martin L, et al. Pre-surgical cortical activation to food pictures is associated with weight loss following bariatric surgery. Surg Obes Relat Dis. 2014;10(6):1188–95.

    Article  PubMed  Google Scholar 

  45. Behary P, Miras AD. Food preferences and underlying mechanisms after bariatric surgery. Proc Nutr Soc. 2015:1-7

  46. Mathes CM, Spector AC. Food selection and taste changes in humans after Roux-en-Y gastric bypass surgery: a direct-measures approach. Physiol Behav. 2012;107(4):476–83.

    Article  CAS  PubMed  Google Scholar 

  47. Mathes CM, Bohnenkamp RA, Blonde GD, Letourneau C, Corteville C, Bueter M, et al. Gastric bypass in rats does not decrease appetitive behavior towards sweet or fatty fluids despite blunting preferential intake of sugar and fat. Physiol Behav. 2015;142:179–88.

    Article  CAS  PubMed  Google Scholar 

  48. Pepino MY, Stein RI, Eagon JC, Klein S. Bariatric surgery-induced weight loss causes remission of food addiction in extreme obesity. Obesity (Silver Spring). 2014;22(8):1792–8.

    Article  Google Scholar 

  49. Miras AD, Scholtz S, Chhina N, Durighel G, Bell JD, le Roux CW, Goldstone AP. Link between satiety gut hormones and reduced food reward after gastric bypass surgery for obesity in humans. Abstract at: The Obesity Society Annual Meeting at Obesity Week 2014; November 2–7, 2014; Boston, MA, USA. 2014; T-3053-OR.

  50. Fenske WK, Bueter M, Miras AD, Ghatei MA, Bloom SR, le Roux CW. Exogenous peptide YY3-36 and Exendin-4 further decrease food intake, whereas octreotide increases food intake in rats after Roux-en-Y gastric bypass. Int J Obes (Lond). 2012;36(3):379–84.

    Article  CAS  Google Scholar 

  51. King WC, Chen JY, Mitchell JE, Kalarchian MA, Steffen KJ, Engel SG, et al. Prevalence of alcohol use disorders before and after bariatric surgery. JAMA. 2012;307(23):2516–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Conason A, Teixeira J, Hsu CH, Puma L, Knafo D, Geliebter A. Substance use following bariatric weight loss surgery. JAMA Surg. 2013;148(2):145–50.

    Article  PubMed  Google Scholar 

  53. Ostlund MP, Backman O, Marsk R, Stockeld D, Lagergren J, Rasmussen F, et al. Increased admission for alcohol dependence after gastric bypass surgery compared with restrictive bariatric surgery. JAMA Surg. 2013;148(4):374–7.

    Article  PubMed  Google Scholar 

  54. Cuellar-Barboza AB, Frye MA, Grothe K, Prieto ML, Schneekloth TD, Loukianova LL, et al. Change in consumption patterns for treatment-seeking patients with alcohol use disorder post-bariatric surgery. J Psychosom Res. 2015;78(3):199–204.

    Article  PubMed  Google Scholar 

  55. Reslan S, Saules KK, Greenwald MK, Schuh LM. Substance misuse following Roux-en-Y gastric bypass surgery. Subst Use Misuse. 2014;49(4):405–17.

    Article  PubMed  Google Scholar 

  56. Woodard GA, Downey J, Hernandez-Boussard T, Morton JM. Impaired alcohol metabolism after gastric bypass surgery: a case-crossover trial. J Am Coll Surg. 2011;212(2):209–14.

    Article  PubMed  Google Scholar 

  57. Avena NM, Gold MS. Sensitivity to alcohol in obese patients: a possible role for food addiction. J Am Coll Surg. 2011;213(3):451. author reply -2.

    Article  PubMed  Google Scholar 

  58. Yanos BR, Saules KK, Schuh LM, Sogg S. Predictors of lowest weight and long-term weight regain among roux-en-y gastric bypass patients. Obes Surg. 2014;25(8):1364–70.

  59. Canetti L, Berry EM, Elizur Y. Psychosocial predictors of weight loss and psychological adjustment following bariatric surgery and a weight-loss program: the mediating role of emotional eating. Int J Eat Disord. 2009;42(2):109–17.

    Article  PubMed  Google Scholar 

  60. Castellini G, Godini L, Amedei SG, Faravelli C, Lucchese M, Ricca V. Psychological effects and outcome predictors of three bariatric surgery interventions: a 1-year follow-up study. Eat Weight Disord. 2014;19(2):217–24.

    Article  PubMed  Google Scholar 

  61. Kubik JF, Gill RS, Laffin M, Karmali S. The impact of bariatric surgery on psychological health. J Obes. 2013;2013:837989.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Marek RJ, Block AR, Ben-Porath YS. The Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF): incremental validity in predicting early postoperative outcomes in spine surgery candidates. Psychol Assess. 2015;27(1):114–24.

    Article  PubMed  Google Scholar 

  63. Arterburn DE, Courcoulas AP. Bariatric surgery for obesity and metabolic conditions in adults. BMJ. 2014;349:g3961.

    Article  PubMed  Google Scholar 

  64. Adams TD, Gress RE, Smith SC, Halverson RC, Simper SC, Rosamond WD, et al. Long-term mortality after gastric bypass surgery. N Engl J Med. 2007;357(8):753–61.

    Article  CAS  PubMed  Google Scholar 

  65. Adams TD, Davidson LE, Litwin SE, Kolotkin RL, LaMonte MJ, Pendleton RC, et al. Health benefits of gastric bypass surgery after 6 years. JAMA. 2012;308(11):1122–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Tindle HA, Omalu B, Courcoulas A, Marcus M, Hammers J, Kuller LH. Risk of suicide after long-term follow-up from bariatric surgery. Am J Med. 2010;123(11):1036–42.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Herget S, Rudolph A, Hilbert A, Bluher S. Psychosocial status and mental health in adolescents before and after bariatric surgery: a systematic literature review. Obes Facts. 2014;7(4):233–45.

    Article  PubMed  Google Scholar 

  68. Ratcliffe D, Sogg S, Friedman KE. Letter to the editor: a comparative study of three-year weight loss and outcomes after laparoscopic gastric bypass in patients with “yellow light” psychological clearance. Obes Surg. 2015;25(3):539–40.

    Article  PubMed  Google Scholar 

  69. Ogden J, Hollywood A, Pring C. The impact of psychological support on weight loss post weight loss surgery: a randomised control trial. Obes Surg. 2015;25(3):500–5.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Ashton K, Drerup M, Windover A, Heinberg L. Brief, four-session group CBT reduces binge eating behaviors among bariatric surgery candidates. Surg Obes Relat Dis. 2009;5(2):257–62.

    Article  PubMed  Google Scholar 

  71. Ashton K, Heinberg L, Merrell J, Lavery M, Windover A, Alcorn K. Pilot evaluation of a substance abuse prevention group intervention for at-risk bariatric surgery candidates. Surg Obes Relat Dis. 2013;9(3):462–7.

    Article  PubMed  Google Scholar 

  72. Livhits M, Mercado C, Yermilov I, Parikh JA, Dutson E, Mehran A, et al. Exercise following bariatric surgery: systematic review. Obes Surg. 2010;20(5):657–65.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Coen PM, Tanner CJ, Helbling NL, Dubis GS, Hames KC, Xie H, et al. Clinical trial demonstrates exercise following bariatric surgery improves insulin sensitivity. J Clin Invest. 2015;125(1):248–57.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Gu J, Strauss C, Bond R, Cavanagh K. How do mindfulness-based cognitive therapy and mindfulness-based stress reduction improve mental health and wellbeing? A systematic review and meta-analysis of mediation studies. Clin Psychol Rev. 2015;37:1–12.

    Article  CAS  PubMed  Google Scholar 

  75. Hempel S, Taylor SL, Marshall NJ, Miake-Lye IM, Beroes JM, Shanman R, et al. Evidence map of mindfulness. VA evidence-based synthesis program reports. Washington (DC): Department of Veterans Affairs; 2014.

    Google Scholar 

  76. Piet J, Hougaard E. The effect of mindfulness-based cognitive therapy for prevention of relapse in recurrent major depressive disorder: a systematic review and meta-analysis. Clin Psychol Rev. 2011;31(6):1032–40.

    Article  PubMed  Google Scholar 

  77. Katterman SN, Kleinman BM, Hood MM, Nackers LM, Corsica JA. Mindfulness meditation as an intervention for binge eating, emotional eating, and weight loss: a systematic review. Eat Behav. 2014;15(2):197–204.

    Article  PubMed  Google Scholar 

  78. O’Reilly GA, Cook L, Spruijt-Metz D, Black DS. Mindfulness-based interventions for obesity-related eating behaviours: a literature review. Obes Rev. 2014;15(6):453–61.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Chafos VH, Economou P. Beyond borderline personality disorder: the mindful brain. Soc Work. 2014;59(4):297–302.

    Article  PubMed  Google Scholar 

  80. Paulson S, Davidson R, Jha A, Kabat-Zinn J. Becoming conscious: the science of mindfulness. Ann N Y Acad Sci. 2013;1303:87–104.

    Article  PubMed  Google Scholar 

  81. Kirk U, Gu X, Harvey AH, Fonagy P, Montague PR. Mindfulness training modulates value signals in ventromedial prefrontal cortex through input from insular cortex. Neuroimage. 2014;100:254–62.

    Article  PubMed  Google Scholar 

  82. Tang YY, Holzel BK, Posner MI. The neuroscience of mindfulness meditation. Nat Rev Neurosci. 2015;16(4):213–25.

    Article  CAS  PubMed  Google Scholar 

  83. Kirk U, Brown KW, Downar J. Adaptive neural reward processing during anticipation and receipt of monetary rewards in mindfulness meditators. Soc Cogn Affect Neurosci. 2015;10(5):752–9.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Samantha Scholtz, Anthony P. Goldstone, and Carel W. le Roux declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carel W. le Roux.

Additional information

This article is part of the Topical Collection on Lipid and Metabolic Effects of Gastrointestinal Surgery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scholtz, S., Goldstone, A.P. & le Roux, C.W. Changes in Reward after Gastric Bypass: the Advantages and Disadvantages. Curr Atheroscler Rep 17, 61 (2015). https://doi.org/10.1007/s11883-015-0534-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-015-0534-5

Keywords

Navigation