Skip to main content
Log in

Lipidomic Profiling at the Interface of Metabolic Surgery and Cardiovascular Disease

  • Lipid and Metabolic Effects of Gastrointestinal Surgery (F Rubino, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Bariatric surgery has helped patients attain not only significant and sustained weight loss but has also proved to be an effective means of mitigating or reversing various obesity-related comorbidities. The impressive rates of remission or resolution of type 2 diabetes mellitus (T2D) following bariatric surgery are well documented and have rightly received great attention. Less understood are the effects of bariatric surgery on cardiovascular disease (CVD) and its underlying risk factors. Thanks to the availability of increasingly sensitive laboratory tools, the emerging science of lipidomics and metagenomics is poised to offer significant contributions to our understanding of metabolically induced vascular diseases. They are set to identify novel mechanisms explaining how the varied approaches of bariatric surgery produce the remarkable improvements in multiple organs observed during patient follow-up. This article reviews recent and novel findings in patients through the lens of lipidomics with an emphasis on CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

BPD:

Biliopancreatic diversion

(hs)-CRP:

(High-sensitive)-C-reactive protein

CVD:

Cardiovascular disease

FAs:

Fatty acids

FFA:

Free fatty acids

FRS:

Framingham risk score

HbA1C :

Glycated hemoglobin

HDL-C:

High-density lipoprotein cholesterol

HOMA-IR:

Homeostatic model assessment of insulin resistance

LAGB:

Laparoscopic-adjustable gastric banding

LDL-C:

Low-density lipoprotein cholesterol

Lp-PLA2 :

Lipoprotein-associated phospholipase A2

LSG:

Laparoscopic sleeve gastrectomy

MI:

Myocardial infarction

PAI-1:

Plasminogen activator inhibitor-1

RYGB:

Roux-en-Y gastric bypass

SOS:

Swedish Obese Study

TAG:

Triacylglycerol

TC:

Total cholesterol

T2D:

Type 2 diabetes mellitus

TLR:

Toll-like receptor

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kwok CS, Pradhan A, Khan MA, et al. Bariatric surgery and its impact on cardiovascular disease and mortality: a systematic review and meta-analysis. Int J Cardiol. 2014;173(1):20–8. This systematic review and meta-analysis summarizes the dramatic reduction of cardiovascular events in patients who had bariatric surgery in comparison to nonsurgical controls.

    Article  PubMed  Google Scholar 

  2. Heneghan HM, Nissen S, Schauer PR. Gastrointestinal surgery for obesity and diabetes: weight loss and control of hyperglycemia. Curr Atheroscler Rep. 2012;14(6):579–87.

    Article  PubMed  CAS  Google Scholar 

  3. Kral JG, Naslund E. Surgical treatment of obesity. Nat Clin Pract Endocrinol Metab. 2007;3(8):574–83.

    Article  PubMed  Google Scholar 

  4. Rubino F, Schauer PR, Kaplan LM, Cummings DE. Metabolic surgery to treat type 2 diabetes: clinical outcomes and mechanisms of action. Annu Rev Med. 2010;61:393–411.

    Article  PubMed  CAS  Google Scholar 

  5. Sjostrom L, Peltonen M, Jacobson P, et al. Bariatric surgery and long-term cardiovascular events. JAMA. 2012;307(1):56–65.

    Article  PubMed  Google Scholar 

  6. Bigornia SJ, Farb MG, Tiwari S, et al. Insulin status and vascular responses to weight loss in obesity. J Am Coll Cardiol. 2013;62(24):2297–305.

    Article  PubMed  CAS  Google Scholar 

  7. Inaba S, Okayama H, Funada J, et al. Impact of type 2 diabetes on serial changes in tissue characteristics of coronary plaques: an integrated backscatter intravascular ultrasound analysis. Eur Heart J Cardiovasc Imaging. 2012;13(9):717–23.

    Article  PubMed  Google Scholar 

  8. Romeo S, Maglio C, Burza MA, et al. Cardiovascular events after bariatric surgery in obese subjects with type 2 diabetes. Diabetes Care. 2012;35(12):2613–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Tzoulaki I, Seretis A, Ntzani EE, Ioannidis JP. Mapping the expanded often inappropriate use of the Framingham Risk Score in the medical literature. J Clin Epidemiol. 2014;67(5):571–7.

    Article  PubMed  Google Scholar 

  10. Hemann BA, Bimson WF, Taylor AJ. The Framingham Risk Score: an appraisal of its benefits and limitations. Am Heart Hosp J. 2007;5(2):91–6.

    Article  PubMed  Google Scholar 

  11. Meikle PJ, Wong G, Tsorotes D, et al. Plasma lipidomic analysis of stable and unstable coronary artery disease. Arterioscler Thromb Vasc Biol. 2011;31(11):2723–32.

    Article  PubMed  CAS  Google Scholar 

  12. Chen SB, Lee YC, Ser KH, et al. Serum C-reactive protein and white blood cell count in morbidly obese surgical patients. Obes Surg. 2009;19(4):461–6.

    Article  PubMed  Google Scholar 

  13. Gumbau V, Bruna M, Canelles E, et al. A prospective study on inflammatory parameters in obese patients after sleeve gastrectomy. Obes Surg. 2014.

  14. Habib P, Scrocco JD, Terek M, Vanek V, Mikolich JR. Effects of bariatric surgery on inflammatory, functional and structural markers of coronary atherosclerosis. Am J Cardiol. 2009;104(9):1251–5.

    Article  PubMed  CAS  Google Scholar 

  15. Hakeam HA, O’Regan PJ, Salem AM, Bamehriz FY, Jomaa LF. Inhibition of C-reactive protein in morbidly obese patients after laparoscopic sleeve gastrectomy. Obes Surg. 2009;19(4):456–60.

    Article  PubMed  Google Scholar 

  16. Iannelli A, Anty R, Schneck AS, Tran A, Gugenheim J. Inflammation, insulin resistance, lipid disturbances, anthropometrics, and metabolic syndrome in morbidly obese patients: a case control study comparing laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy. Surgery. 2011;149(3):364–70.

    Article  PubMed  Google Scholar 

  17. Ruiz-Tovar J, Oller I, Galindo I, et al. Change in levels of C-reactive protein (CRP) and serum cortisol in morbidly obese patients after laparoscopic sleeve gastrectomy. Obes Surg. 2013;23(6):764–9.

    Article  PubMed  Google Scholar 

  18. Wong AT, Chan DC, Armstrong J, Watts GF. Effect of laparoscopic sleeve gastrectomy on elevated C-reactive protein and atherogenic dyslipidemia in morbidly obese patients. Clin Biochem. 2011;44(4):342–4.

    Article  PubMed  CAS  Google Scholar 

  19. Woodard GA, Peraza J, Bravo S, Toplosky L, Hernandez-Boussard T, Morton JM. One year improvements in cardiovascular risk factors: a comparative trial of laparoscopic Roux-en-Y gastric bypass vs. adjustable gastric banding. Obes Surg. 2010;20(5):578–82.

    Article  PubMed  Google Scholar 

  20. Appachi S, Kashyap SR. ‘Adiposopathy’ and cardiovascular disease: the benefits of bariatric surgery. Curr Opin Cardiol. 2013;28(5):540–6.

    PubMed  Google Scholar 

  21. Kardassis D, Schonander M, Sjostrom L, Karason K. Carotid artery remodelling in relation to body fat distribution, inflammation and sustained weight loss in obesity. J Intern Med. 2014;275(5):534–43.

    Article  PubMed  CAS  Google Scholar 

  22. Yao L, Herlea-Pana O, Heuser-Baker J, Chen Y, Barlic-Dicen J. Roles of the Chemokine system in development of obesity, insulin resistance, and cardiovascular disease. J Immunol Res. 2014;2014:181450.

    Article  PubMed  PubMed Central  Google Scholar 

  23. de Jonge C, Rensen SS, Verdam FJ, et al. Endoscopic duodenal-jejunal bypass liner rapidly improves type 2 diabetes. Obes Surg. 2013;23(9):1354–60.

    Article  PubMed  Google Scholar 

  24. de Jonge C, Rensen SS, D’Agnolo HM, Bouvy ND, Buurman WA, Greve JW. Six months of treatment with the endoscopic duodenal-jejunal bypass liner does not lead to decreased systemic inflammation in obese patients with type 2 diabetes. Obes Surg. 2014;24(2):337–41.

    Article  PubMed  Google Scholar 

  25. Bays HE, Laferrere B, Dixon J, et al. Adiposopathy and bariatric surgery: is ‘sick fat’ a surgical disease? Int J Clin Pract. 2009;63(9):1285–300.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Bays H. Adiposopathy, “sick fat,” Ockham’s razor, and resolution of the obesity paradox. Curr Atheroscler Rep. 2014;16(5):409.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li S, Shin HJ, Ding EL, van Dam RM. Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2009;302(2):179–88.

    Article  PubMed  CAS  Google Scholar 

  28. Sattar N, Nelson SM. Adiponectin, diabetes, and coronary heart disease in older persons: unraveling the paradox. J Clin Endocrinol Metab. 2008;93(9):3299–301.

    Article  PubMed  CAS  Google Scholar 

  29. Herder C, Peltonen M, Svensson PA, et al. Adiponectin and bariatric surgery: associations with diabetes and cardiovascular disease in the Swedish obese subjects study. Diabetes Care. 2014;37(5):1401–9.

    Article  PubMed  CAS  Google Scholar 

  30. Umemura A, Sasaki A, Nitta H, Otsuka K, Suto T, Wakabayashi G. Effects of changes in adipocyte hormones and visceral adipose tissue and the reduction of obesity-related comorbidities after laparoscopic sleeve gastrectomy in Japanese patients with severe obesity. Endocr J. 2014.

  31. Brethauer SA, Heneghan HM, Eldar S, et al. Early effects of gastric bypass on endothelial function, inflammation, and cardiovascular risk in obese patients. Surg Endosc. 2011;25(8):2650–9.

    Article  PubMed  Google Scholar 

  32. Bradley D, Conte C, Mittendorfer B, et al. Gastric bypass and banding equally improve insulin sensitivity and beta cell function. J Clin Invest. 2012;122(12):4667–74.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Korner J, Inabnet W, Febres G, et al. Prospective study of gut hormone and metabolic changes after adjustable gastric banding and Roux-en-Y gastric bypass. Int J Obes (Lond). 2009;33(7):786–95.

    Article  CAS  Google Scholar 

  34. Dickson SL, Egecioglu E, Landgren S, Skibicka KP, Engel JA, Jerlhag E. The role of the central ghrelin system in reward from food and chemical drugs. Mol Cell Endocrinol. 2011;340(1):80–7.

    Article  PubMed  CAS  Google Scholar 

  35. Pournaras DJ, Le Roux CW. The effect of bariatric surgery on gut hormones that alter appetite. Diabetes Metab. 2009;35(6 Pt 2):508–12.

    Article  PubMed  CAS  Google Scholar 

  36. Langer FB, Reza Hoda MA, Bohdjalian A, et al. Sleeve gastrectomy and gastric banding: effects on plasma ghrelin levels. Obes Surg. 2005;15(7):1024–9.

    Article  PubMed  CAS  Google Scholar 

  37. Murphy KG, Dhillo WS, Bloom SR. Gut peptides in the regulation of food intake and energy homeostasis. Endocr Rev. 2006;27(7):719–27.

    Article  PubMed  CAS  Google Scholar 

  38. Graessler J, Schwudke D, Schwarz PE, Herzog R, Shevchenko A, Bornstein SR. Top-down lipidomics reveals ether lipid deficiency in blood plasma of hypertensive patients. PLoS One. 2009;4(7):e6261.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Stegemann C, Drozdov I, Shalhoub J, et al. Comparative lipidomics profiling of human atherosclerotic plaques. Circ Cardiovasc Genet. 2011;4(3):232–42.

    Article  PubMed  CAS  Google Scholar 

  40. Stegemann C, Pechlaner R, Willeit P, et al. Lipidomics profiling and risk of cardiovascular disease in the prospective population-based Bruneck study. Circulation. 2014;129(18):1821–31. This prospective population-based study provides evidence showing individual lipid species outperform lipid families and classic risk factors with regard to CVD prediction on the basis of lipid network analysis.

    Article  PubMed  CAS  Google Scholar 

  41. Meikle PJ, Wong G, Barlow CK, et al. Plasma lipid profiling shows similar associations with prediabetes and type 2 diabetes. PLoS One. 2013;8(9):e74341. This study identified plasma lipidomic profile characterizing increased risk for type 2 diabetes mellitus in patients with prediabetes.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Sigruener A, Kleber ME, Heimerl S, Liebisch G, Schmitz G, Maerz W. Glycerophospholipid and sphingolipid species and mortality: the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. PLoS One. 2014;9(1):e85724. This population-based study identified most deleterious and protective individual lipid species for use in risk prediction calculations.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Katz SS, Shipley GG, Small DM. Physical chemistry of the lipids of human atherosclerotic lesions. Demonstration of a lesion intermediate between fatty streaks and advanced plaques. J Clin Invest. 1976;58(1):200–11.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Schmitz G, Ruebsaamen K. Metabolism and atherogenic disease association of lysophosphatidylcholine. Atherosclerosis. 2010;208(1):10–8.

    Article  PubMed  CAS  Google Scholar 

  45. Kunnen S, Van Eck M. Lecithin:cholesterol acyltransferase: old friend or foe in atherosclerosis? J Lipid Res. 2012;53(9):1783–99.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Choi J, Zhang W, Gu X, et al. Lysophosphatidylcholine is generated by spontaneous deacylation of oxidized phospholipids. Chem Res Toxicol. 2011;24(1):111–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Goncalves I, Edsfeldt A, Ko NY, et al. Evidence supporting a key role of Lp-PLA2-generated lysophosphatidylcholine in human atherosclerotic plaque inflammation. Arterioscler Thromb Vasc Biol. 2012;32(6):1505–12.

    Article  PubMed  CAS  Google Scholar 

  48. Carneiro AB, Iaciura BM, Nohara LL, et al. Lysophosphatidylcholine triggers TLR2- and TLR4-mediated signaling pathways but counteracts LPS-induced NO synthesis in peritoneal macrophages by inhibiting NF-kappaB translocation and MAPK/ERK phosphorylation. PLoS One. 2013;8(9):e76233.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Erridge C. The roles of Toll-like receptors in atherosclerosis. J Innate Immun. 2009;1(4):340–9.

    Article  PubMed  CAS  Google Scholar 

  50. Huo T, Cai S, Lu X, Sha Y, Yu M, Li F. Metabonomic study of biochemical changes in the serum of type 2 diabetes mellitus patients after the treatment of metformin hydrochloride. J Pharm Biomed Anal. 2009;49(4):976–82.

    Article  PubMed  CAS  Google Scholar 

  51. Han MS, Lim YM, Quan W, et al. Lysophosphatidylcholine as an effector of fatty acid-induced insulin resistance. J Lipid Res. 2011;52(6):1234–46.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Yea K, Kim J, Yoon JH, et al. Lysophosphatidylcholine activates adipocyte glucose uptake and lowers blood glucose levels in murine models of diabetes. J Biol Chem. 2009;284(49):33833–40.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Graessler J, Bornstein TD, Goel D, et al. Lipidomic profiling before and after Roux-en-Y gastric bypass in obese patients with diabetes. Pharmacogenomics J. 2014;14(3):201–7.

    Article  PubMed  CAS  Google Scholar 

  54. Fernandez C, Sandin M, Sampaio JL, et al. Plasma lipid composition and risk of developing cardiovascular disease. PLoS One. 2013;8(8):e71846.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Spijkers LJ, van den Akker RF, Janssen BJ, et al. Hypertension is associated with marked alterations in sphingolipid biology: a potential role for ceramide. PLoS One. 2011;6(7):e21817.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Paumen MB, Ishida Y, Muramatsu M, Yamamoto M, Honjo T. Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis. J Biol Chem. 1997;272(6):3324–9.

    Article  PubMed  CAS  Google Scholar 

  57. Galadari S, Rahman A, Pallichankandy S, Galadari A, Thayyullathil F. Role of ceramide in diabetes mellitus: evidence and mechanisms. Lipids Health Dis. 2013;12:98.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Shimabukuro M, Zhou YT, Levi M, Unger RH. Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci U S A. 1998;95(5):2498–502.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Veret J, Coant N, Berdyshev EV, et al. Ceramide synthase 4 and de novo production of ceramides with specific N-acyl chain lengths are involved in glucolipotoxicity-induced apoptosis of INS-1 beta-cells. Biochem J. 2011;438(1):177–89.

    Article  PubMed  CAS  Google Scholar 

  60. Boslem E, Meikle PJ, Biden TJ. Roles of ceramide and sphingolipids in pancreatic beta-cell function and dysfunction. Islets. 2012;4(3):177–87.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cunha DA, Hekerman P, Ladriere L, et al. Initiation and execution of lipotoxic ER stress in pancreatic beta-cells. J Cell Sci. 2008;121(Pt 14):2308–18.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Laybutt DR, Hawkins YC, Lock J, et al. Influence of diabetes on the loss of beta cell differentiation after islet transplantation in rats. Diabetologia. 2007;50(10):2117–25.

    Article  PubMed  CAS  Google Scholar 

  63. Karaskov E, Scott C, Zhang L, Teodoro T, Ravazzola M, Volchuk A. Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic beta-cell apoptosis. Endocrinology. 2006;147(7):3398–407.

    Article  PubMed  CAS  Google Scholar 

  64. Schmitz-Peiffer C, Craig DL, Biden TJ. Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate. J Biol Chem. 1999;274(34):24202–10.

    Article  PubMed  CAS  Google Scholar 

  65. Chavez JA, Knotts TA, Wang LP, et al. A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem. 2003;278(12):10297–303.

    Article  PubMed  CAS  Google Scholar 

  66. Mathis D, Vence L, Benoist C. beta-Cell death during progression to diabetes. Nature. 2001;414(6865):792–8.

    Article  PubMed  CAS  Google Scholar 

  67. Chandra J, Zhivotovsky B, Zaitsev S, Juntti-Berggren L, Berggren PO, Orrenius S. Role of apoptosis in pancreatic beta-cell death in diabetes. Diabetes. 2001;50 Suppl 1:S44–7.

    Article  PubMed  CAS  Google Scholar 

  68. Brozinick JT, Hawkins E, Hoang Bui H, et al. Plasma sphingolipids are biomarkers of metabolic syndrome in non-human primates maintained on a Western-style diet. Int J Obes (Lond). 2013;37(8):1064–70.

    Article  CAS  Google Scholar 

  69. Adams 2nd JM, Pratipanawatr T, Berria R, et al. Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes. 2004;53(1):25–31.

    Article  PubMed  CAS  Google Scholar 

  70. Kelpe CL, Moore PC, Parazzoli SD, Wicksteed B, Rhodes CJ, Poitout V. Palmitate inhibition of insulin gene expression is mediated at the transcriptional level via ceramide synthesis. J Biol Chem. 2003;278(32):30015–21.

    Article  PubMed  CAS  Google Scholar 

  71. Chavez JA, Holland WL, Bar J, Sandhoff K, Summers SA. Acid ceramidase overexpression prevents the inhibitory effects of saturated fatty acids on insulin signaling. J Biol Chem. 2005;280(20):20148–53.

    Article  PubMed  CAS  Google Scholar 

  72. Chavez JA, Summers SA. A ceramide-centric view of insulin resistance. Cell Metab. 2012;15(5):585–94.

    Article  PubMed  CAS  Google Scholar 

  73. Tao C, Sifuentes A, Holland WL. Regulation of glucose and lipid homeostasis by adiponectin: effects on hepatocytes, pancreatic beta cells and adipocytes. Best Pract Res Clin Endocrinol Metab. 2014;28(1):43–58.

    Article  PubMed  CAS  Google Scholar 

  74. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006;116(11):3015–25.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Holland WL, Bikman BT, Wang LP, et al. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J Clin Invest. 2011;121(5):1858–70.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  76. Caesar R, Fak F, Backhed F. Effects of gut microbiota on obesity and atherosclerosis via modulation of inflammation and lipid metabolism. J Intern Med. 2010;268(4):320–8.

    Article  PubMed  CAS  Google Scholar 

  77. Creely SJ, McTernan PG, Kusminski CM, et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab. 2007;292(3):E740–7.

    Article  PubMed  CAS  Google Scholar 

  78. Funk JL, Feingold KR, Moser AH, Grunfeld C. Lipopolysaccharide stimulation of RAW 264.7 macrophages induces lipid accumulation and foam cell formation. Atherosclerosis. 1993;98(1):67–82.

    Article  PubMed  CAS  Google Scholar 

  79. Graessler J, Qin Y, Zhong H, et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics J. 2013;13(6):514–22.

    Article  PubMed  CAS  Google Scholar 

  80. Karamanakos SN, Vagenas K, Kalfarentzos F, Alexandrides TK. Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy: a prospective, double blind study. Ann Surg. 2008;247(3):401–7.

    Article  PubMed  Google Scholar 

  81. To VT, Huttl TP, Lang R, Piotrowski K, Parhofer KG. Changes in body weight, glucose homeostasis, lipid profiles, and metabolic syndrome after restrictive bariatric surgery. Exp Clin Endocrinol Diabetes. 2012;120(9):547–52.

    Article  PubMed  CAS  Google Scholar 

  82. Heneghan HM, Huang H, Kashyap SR, et al. Reduced cardiovascular risk after bariatric surgery is linked to plasma ceramides, apolipoprotein-B100, and ApoB100/A1 ratio. Surg Obes Relat Dis. 2013;9(1):100–7.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Huang H, Kasumov T, Gatmaitan P, et al. Gastric bypass surgery reduces plasma ceramide subspecies and improves insulin sensitivity in severely obese patients. Obesity (Silver Spring). 2011;19(11):2235–40.

    Article  CAS  Google Scholar 

  84. Viana EC, Araujo-Dasilio KL, Miguel GP, et al. Gastric bypass and sleeve gastrectomy: the same impact on IL-6 and TNF-alpha. Prospective clinical trial Obes Surg. 2013;23(8):1252–61.

    Google Scholar 

  85. Ali MR, Fuller WD, Rasmussen J. Detailed description of early response of metabolic syndrome after laparoscopic Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2009;5(3):346–51.

    Article  PubMed  Google Scholar 

  86. Raffaelli M, Guidone C, Callari C, Iaconelli A, Bellantone R, Mingrone G. Effect of gastric bypass versus diet on cardiovascular risk factors. Ann Surg. 2014.

  87. Shah SS, Todkar JS, Shah PS, Cummings DE. Diabetes remission and reduced cardiovascular risk after gastric bypass in Asian Indians with body mass index <35 kg/m(2). Surg Obes Relat Dis. 2010;6(4):332–8.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Dixon JB, O’Brien PE. Lipid profile in the severely obese: changes with weight loss after lap-band surgery. Obes Res. 2002;10(9):903–10.

    Article  PubMed  Google Scholar 

  89. Waldmann E, Huttl TP, Goke B, Lang R, Parhofer KG. Effect of sleeve gastrectomy on postprandial lipoprotein metabolism in morbidly obese patients. Lipids Health Dis. 2013;12:82.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  90. Tsoli M, Chronaiou A, Kehagias I, Kalfarentzos F, Alexandrides TK. Hormone changes and diabetes resolution after biliopancreatic diversion and laparoscopic sleeve gastrectomy: a comparative prospective study. Surg Obes Relat Dis. 2013;9(5):667–77.

    Article  PubMed  Google Scholar 

  91. Bezante GP, Scopinaro A, Papadia F, et al. Biliopancreatic diversion reduces QT interval and dispersion in severely obese patients. Obesity (Silver Spring). 2007;15(6):1448–54.

    Article  Google Scholar 

  92. Piche ME, Martin J, Cianflone K, et al. Changes in predicted cardiovascular disease risk after biliopancreatic diversion surgery in severely obese patients. Metabolism. 2014;63(1):79–86.

    Article  PubMed  CAS  Google Scholar 

  93. Vila M, Ruiz O, Belmonte M, et al. Changes in lipid profile and insulin resistance in obese patients after Scopinaro biliopancreatic diversion. Obes Surg. 2009;19(3):299–306.

    Article  PubMed  Google Scholar 

  94. Salani B, Briatore L, Andraghetti G, Adami GF, Maggi D, Cordera R. High-molecular weight adiponectin isoforms increase after biliopancreatic diversion in obese subjects. Obesity (Silver Spring). 2006;14(9):1511–4.

    Article  CAS  Google Scholar 

  95. de Carvalho CP, Marin DM, de Souza AL, et al. GLP-1 and adiponectin: effect of weight loss after dietary restriction and gastric bypass in morbidly obese patients with normal and abnormal glucose metabolism. Obes Surg. 2009;19(3):313–20.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Ryan H. Ban, Virginia Kamvissi, Klaus-Martin Schulte, Stefan Richard Bornstein, Francesco Rubino, and Juergen Graessler declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen Graessler.

Additional information

This article is part of the Topical Collection on Lipid and Metabolic Effects of Gastrointestinal Surgery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ban, R.H., Kamvissi, V., Schulte, KM. et al. Lipidomic Profiling at the Interface of Metabolic Surgery and Cardiovascular Disease. Curr Atheroscler Rep 16, 455 (2014). https://doi.org/10.1007/s11883-014-0455-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-014-0455-8

Keywords

Navigation