Skip to main content
Log in

8-Hydroxy-2′-Deoxyguanosine and Cardiovascular Disease: a Systematic Review

Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Oxidative stress due to an excess of reactive oxygen species (ROS) may play a role in the development and progression of cardiovascular disease (CVD). 8-hydroxy-2′-deoxyguanosine (8-OHdG) is a marker of oxidative DNA damage caused by ROS. This review aimed to assess the association between 8-OHdG and CVD by reviewing the literature. Studies in human subjects using either plasma or urine to determine 8-OHdG concentrations were surveyed. Eighteen relevant studies were found, of which 13 were case-control studies and five had a prospective design. Without exception, the case-control studies showed significant positive associations between 8-OHdG and CVD. In agreement, two prospective studies showed a significant association of 8-OHdG and heart failure. Furthermore, two prospective studies found a significant association between 8-OHdG and stroke, and finally, one prospective study showed a borderline significant (p = 0.08) association between coronary artery disease (CAD) patients developing a cardiac event and 8-OHdG concentrations. In conclusion, high levels of 8-OHdG in blood and urine are associated with atherosclerosis and heart failure, but further large prospective studies are needed to investigate 8-OHdG as a predictor for cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. D’Autreaux B, Toledano MB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 2007;8:813–24.

    Article  PubMed  Google Scholar 

  2. Sies H. Oxidative stress: from basic research to clinical application. Am J Med. 1991;91:31S–8.

    Article  PubMed  CAS  Google Scholar 

  3. Evans MD, Dizdaroglu M, Cooke MS. Oxidative DNA damage and disease: induction, repair and significance. Mutat Res. 2004;567:1–61.

    Article  PubMed  CAS  Google Scholar 

  4. Cooke MS, Evans MD. 8-Oxo-deoxyguanosine: reduce, reuse, recycle? Proc Natl Acad Sci U S A. 2007;104:13535–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Park EM, Shigenaga MK, Degan P, et al. Assay of excised oxidative DNA lesions: isolation of 8-oxoguanine and its nucleoside derivatives from biological fluids with a monoclonal antibody column. Proc Natl Acad Sci U S A. 1992;89:3375–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120:483–95.

    Article  PubMed  CAS  Google Scholar 

  7. Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A. 1993;90:7915–22.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Fruehauf JP, Meyskens Jr FL. Reactive oxygen species: a breath of life or death? Clin Cancer Res. 2007;13:789–94.

    Article  PubMed  CAS  Google Scholar 

  9. Cadet J, Delatour T, Douki T, et al. Hydroxyl radicals and DNA base damage. Mutat Res. 1999;424:9–21.

    Article  PubMed  CAS  Google Scholar 

  10. Pryor WA. Why is the hydroxyl radical the only radical that commonly adds to DNA? Hypothesis: it has a rare combination of high electrophilicity, high thermochemical reactivity, and a mode of production that can occur near DNA. Free Radic Biol Med. 1988;4:219–23.

    Article  PubMed  CAS  Google Scholar 

  11. Collins AR, Gedik CM, Olmedilla B, et al. Oxidative DNA damage measured in human lymphocytes: large differences between sexes and between countries, and correlations with heart disease mortality rates. FASEB J. 1998;12:1397–400.

    PubMed  CAS  Google Scholar 

  12. Henle ES, Linn S. Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J Biol Chem. 1997;272:19095–8.

    Article  PubMed  CAS  Google Scholar 

  13. Dizdaroglu M. Oxidative damage to DNA in mammalian chromatin. Mutat Res. 1992;275:331–42.

    Article  PubMed  CAS  Google Scholar 

  14. Boveris A, Valdez LB, Zaobornyj T, et al. Mitochondrial metabolic states regulate nitric oxide and hydrogen peroxide diffusion to the cytosol. Biochim Biophys Acta. 2006;1757:535–42.

    Article  PubMed  CAS  Google Scholar 

  15. van Loon B, Markkanen E, Hubscher U. Oxygen as a friend and enemy: how to combat the mutational potential of 8-oxo-guanine. DNA Repair (Amst). 2010;9:604–16.

    Article  Google Scholar 

  16. Yin B, Whyatt RM, Perera FP, et al. Determination of 8-hydroxydeoxyguanosine by an immunoaffinity chromatography-monoclonal antibody-based ELISA. Free Radic Biol Med. 1995;18:1023–32.

    Article  PubMed  CAS  Google Scholar 

  17. Loft S, Poulsen HE. Cancer risk and oxidative DNA damage in man. J Mol Med (Berl). 1996;74:297–312.

    Article  CAS  Google Scholar 

  18. Wu LL, Chiou CC, Chang PY, et al. Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta. 2004;339:1–9.

    Article  PubMed  CAS  Google Scholar 

  19. Collins A, Cadet J, Epe B, et al. Problems in the measurement of 8-oxoguanine in human DNA. Report of a workshop, DNA oxidation, held in Aberdeen, UK, 19–21 January, 1997. Carcinogenesis. 1997;18:1833–6.

    Article  PubMed  CAS  Google Scholar 

  20. Matsumoto Y, Ogawa Y, Yoshida R, et al. The stability of the oxidative stress marker, urinary 8-hydroxy-2′- deoxyguanosine (8-OHdG), when stored at room temperature. J Occup Health. 2008;50:366–72.

    Article  PubMed  CAS  Google Scholar 

  21. Barregard L, Moller P, Henriksen T, et al. Human and methodological sources of variability in the measurement of urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine. Antioxid Redox Signal. 2013;18:2377–91.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Lengger C, Schoch G, Topp H. A high-performance liquid chromatographic method for the determination of 8-oxo-7,8-dihydro-2′-deoxyguanosine in urine from man and rat. Anal Biochem. 2000;287:65–72.

    Article  PubMed  CAS  Google Scholar 

  23. Dizdaroglu M, Jaruga P, Birincioglu M, et al. Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med. 2002;32:1102–15.

    Article  PubMed  CAS  Google Scholar 

  24. Toyokuni S, Tanaka T, Hattori Y, et al. Quantitative immunohistochemical determination of 8-hydroxy-2′-deoxyguanosine by a monoclonal antibody N45.1: its application to ferric nitrilotriacetate-induced renal carcinogenesis model. Lab Invest. 1997;76:365–74.

    PubMed  CAS  Google Scholar 

  25. Hu CW, Wu MT, Chao MR, et al. Comparison of analyses of urinary 8-hydroxy-2′-deoxyguanosine by isotope-dilution liquid chromatography with electrospray tandem mass spectrometry and by enzyme-linked immunosorbent assay. Rapid Commun Mass Spectrom. 2004;18:505–10.

    Article  PubMed  CAS  Google Scholar 

  26. Yoshida R, Ogawa Y, Kasai H. Urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine values measured by an ELISA correlated well with measurements by high-performance liquid chromatography with electrochemical detection. Cancer Epidemiol Biomarkers Prev. 2002;11:1076–81.

    PubMed  Google Scholar 

  27. Lai CQ, Tucker KL, Parnell LD, et al. PPARGC1A variation associated with DNA damage, diabetes, and cardiovascular diseases: the Boston Puerto Rican Health Study. Diabetes. 2008;57:809–16.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Jaruga P, Rozalski R, Jawien A, et al. DNA damage products (5′R)- and (5′S)-8,5′-cyclo-2′-deoxyadenosines as potential biomarkers in human urine for atherosclerosis. Biochemistry. 2012;51:1822–4.

    Article  PubMed  CAS  Google Scholar 

  29. Xiang F, Shuanglun X, Jingfeng W, et al. Association of serum 8-hydroxy-2′-deoxyguanosine levels with the presence and severity of coronary artery disease. Coron Artery Dis. 2011;22:223–7.

    Article  PubMed  Google Scholar 

  30. Arao K, Yasu T, Umemoto T, et al. Effects of pitavastatin on fasting and postprandial endothelial function and blood rheology in patients with stable coronary artery disease. Circ J. 2009;73:1523–30.

    Article  PubMed  CAS  Google Scholar 

  31. Arca M, Conti B, Montali A, et al. C242T polymorphism of NADPH oxidase p22phox and recurrence of cardiovascular events in coronary artery disease. Arterioscler Thromb Vasc Biol. 2008;28:752–7.

    Article  PubMed  CAS  Google Scholar 

  32. Himmetoglu S, Dincer Y, Bozcali E, et al. Oxidative DNA damage and antioxidant defense after reperfusion in acute myocardial infarction. J Investig Med. 2009;57:595–9.

    PubMed  CAS  Google Scholar 

  33. Nagayoshi Y, Kawano H, Hokamaki J, et al. Urinary 8-hydroxy-2′-deoxyguanosine levels increase after reperfusion in acute myocardial infarction and may predict subsequent cardiac events. Am J Cardiol. 2005;95:514–7.

    Article  PubMed  CAS  Google Scholar 

  34. Mizukoshi G, Katsura K, Katayama Y. Urinary 8-hydroxy-2′-deoxyguanosine and serum S100beta in acute cardioembolic stroke patients. Neurol Res. 2005;27:644–6.

    Article  PubMed  CAS  Google Scholar 

  35. Brea D, Roquer J, Serena J, et al. Oxidative stress markers are associated to vascular recurrence in non-cardioembolic stroke patients non-treated with statins. BMC Neurol. 2012;12:65.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Nakajima H, Unoda K, Ito T, et al. The relation of urinary 8-OHdG, a marker of oxidative stress to DNA, and clinical outcomes for ischemic stroke. Open Neurol J. 2012;6:51–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Nagayoshi Y, Kawano H, Hokamaki J, et al. Differences in oxidative stress markers based on the aetiology of heart failure: comparison of oxidative stress in patients with and without coronary artery disease. Free Radic Res. 2009;43:1159–66.

    Article  PubMed  CAS  Google Scholar 

  38. Watanabe E, Matsuda N, Shiga T, et al. Significance of 8-hydroxy-2′-deoxyguanosine levels in patients with idiopathic dilated cardiomyopathy. J Card Fail. 2006;12:527–32.

    Article  PubMed  CAS  Google Scholar 

  39. Rivera M, Rosello-Lleti E, de Garcia BF, et al. [8-hydroxy-2′-deoxyguanosine and lipid peroxidation in patients with heart failure]. Rev Esp Cardiol. 2006;59:1140–5.

    Article  Google Scholar 

  40. Pignatelli P, Cangemi R, Celestini A, et al. Tumour necrosis factor alpha upregulates platelet CD40L in patients with heart failure. Cardiovasc Res. 2008;78:515–22.

    Article  PubMed  CAS  Google Scholar 

  41. Kono Y, Nakamura K, Kimura H, et al. Elevated levels of oxidative DNA damage in serum and myocardium of patients with heart failure. Circ J. 2006;70:1001–5.

    Article  PubMed  CAS  Google Scholar 

  42. Kobayashi S, Susa T, Tanaka T, et al. Urinary 8-hydroxy-2′-deoxyguanosine reflects symptomatic status and severity of systolic dysfunction in patients with chronic heart failure. Eur J Heart Fail. 2011;13:29–36.

    Article  PubMed  CAS  Google Scholar 

  43. Susa T, Kobayashi S, Tanaka T, et al. Urinary 8-hydroxy-2′-deoxyguanosine as a novel biomarker for predicting cardiac events and evaluating the effectiveness of carvedilol treatment in patients with chronic systolic heart failure. Circ J. 2012;76:117–26.

    Article  PubMed  CAS  Google Scholar 

  44. Suzuki S, Shishido T, Ishino M, et al. 8-Hydroxy-2′-deoxyguanosine is a prognostic mediator for cardiac event. Eur J Clin Invest. 2011;41:759–66.

    Article  PubMed  CAS  Google Scholar 

  45. Wunderlich MT, Ebert AD, Kratz T, et al. Early neurobehavioral outcome after stroke is related to release of neurobiochemical markers of brain damage. Stroke. 1999;30:1190–5.

    Article  PubMed  CAS  Google Scholar 

  46. Kojda G, Harrison D. Interactions between NO and reactive oxygen species: pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure. Cardiovasc Res. 1999;43:562–71.

    Article  PubMed  CAS  Google Scholar 

  47. White CR, Brock TA, Chang LY, et al. Superoxide and peroxynitrite in atherosclerosis. Proc Natl Acad Sci U S A. 1994;91:1044–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Kunsch C, Medford RM. Oxidative stress as a regulator of gene expression in the vasculature. Circ Res. 1999;85:753–66.

    Article  PubMed  CAS  Google Scholar 

  49. Marui N, Offermann MK, Swerlick R, et al. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. J Clin Invest. 1993;92:1866–74.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Tokunaga O, Satoh T, Yamasaki F, et al. Multinucleated variant endothelial cells (MVECs) in human aorta: chromosomal aneuploidy and elevated uptake of LDL. Semin Thromb Hemost. 1998;24:279–84.

    Article  PubMed  CAS  Google Scholar 

  51. Parthasarathy S, Steinberg D, Witztum JL. The role of oxidized low-density lipoproteins in the pathogenesis of atherosclerosis. Annu Rev Med. 1992;43:219–25.

    Article  PubMed  CAS  Google Scholar 

  52. Chen KH, Srivastava DK, Singhal RK, et al. Modulation of base excision repair by low density lipoprotein, oxidized low density lipoprotein and antioxidants in mouse monocytes. Carcinogenesis. 2000;21:1017–22.

    Article  PubMed  CAS  Google Scholar 

  53. Boiteux S, Radicella JP. The human OGG1 gene: structure, functions, and its implication in the process of carcinogenesis. Arch Biochem Biophys. 2000;377:1–8.

    Article  PubMed  CAS  Google Scholar 

  54. Gackowski D, Kruszewski M, Jawien A, et al. Further evidence that oxidative stress may be a risk factor responsible for the development of atherosclerosis. Free Radic Biol Med. 2001;31:542–7.

    Article  PubMed  CAS  Google Scholar 

  55. Andreassi MG, Botto N. DNA damage as a new emerging risk factor in atherosclerosis. Trends Cardiovasc Med. 2003;13:270–5.

    Article  PubMed  CAS  Google Scholar 

  56. Binkova B, Smerhovsky Z, Strejc P, et al. DNA-adducts and atherosclerosis: a study of accidental and sudden death males in the Czech Republic. Mutat Res. 2002;501:115–28.

    Article  PubMed  CAS  Google Scholar 

  57. Martinet W, Knaapen MW, De Meyer GR, et al. Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation. 2002;106:927–32.

    Article  PubMed  CAS  Google Scholar 

  58. Mahmoudi M, Mercer J, Bennett M. DNA damage and repair in atherosclerosis. Cardiovasc Res. 2006;71:259–68.

    Article  PubMed  CAS  Google Scholar 

  59. Matthews C, Gorenne I, Scott S, et al. Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: effects of telomerase and oxidative stress. Circ Res. 2006;99:156–64.

    Article  PubMed  CAS  Google Scholar 

  60. Mercer JR, Cheng KK, Figg N, et al. DNA damage links mitochondrial dysfunction to atherosclerosis and the metabolic syndrome. Circ Res. 2010;107:1021–31.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Fyhrquist F, Saijonmaa O, Strandberg T. The roles of senescence and telomere shortening in cardiovascular disease. Nat Rev Cardiol. 2013;10:274–83.

    Article  PubMed  CAS  Google Scholar 

  62. Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol. 2011;301:H2181–90.

    Article  PubMed  CAS  Google Scholar 

  63. Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and mitochondrial DNA damage in heart failure. Circ J. 2008;72(Suppl A):A31–7.

    Article  PubMed  Google Scholar 

  64. Tsutsui H, Ide T, Kinugawa S. Mitochondrial oxidative stress, DNA damage, and heart failure. Antioxid Redox Signal. 2006;8:1737–44.

    Article  PubMed  CAS  Google Scholar 

  65. Arbustini E, Diegoli M, Fasani R, et al. Mitochondrial DNA mutations and mitochondrial abnormalities in dilated cardiomyopathy. Am J Pathol. 1998;153:1501–10.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Ahuja P, Wanagat J, Wang Z, et al. Divergent mitochondrial biogenesis responses in human cardiomyopathy. Circulation. 2013;127:1957–67.

    Article  PubMed  CAS  Google Scholar 

  67. Corral-Debrinski M, Shoffner JM, Lott MT, et al. Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mutat Res. 1992;275:169–80.

    Article  PubMed  CAS  Google Scholar 

  68. Marin-Garcia J, Goldenthal MJ. Mitochondrial centrality in heart failure. Heart Fail Rev. 2008;13:137–50.

    Article  PubMed  Google Scholar 

  69. Lee Y, Gustafsson AB. Role of apoptosis in cardiovascular disease. Apoptosis. 2009;14:536–48.

    Article  PubMed  Google Scholar 

  70. Karamanlidis G, Nascimben L, Couper GS, et al. Defective DNA replication impairs mitochondrial biogenesis in human failing hearts. Circ Res. 2010;106:1541–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Lona J. Kroese and Peter G. Scheffer declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Scheffer.

Additional information

This article is part of the Topical Collection on Vascular Biology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kroese, L.J., Scheffer, P.G. 8-Hydroxy-2′-Deoxyguanosine and Cardiovascular Disease: a Systematic Review. Curr Atheroscler Rep 16, 452 (2014). https://doi.org/10.1007/s11883-014-0452-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-014-0452-y

Keywords

Navigation