Skip to main content
Log in

Pharmacology of Antiplatelet Agents

  • Genetics (AJ Marian, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Pharmacotherapies with agents that inhibit platelet function have proven to be effective in the treatment of acute coronary syndromes, and in the prevention of complications during and after percutaneous coronary intervention. Because of multiple synergetic pathways of platelet activation and their close interplay with coagulation, current treatment strategies are based not only on platelet inhibition, but also on the attenuation of procoagulant activity, inhibition of thrombin generation, and enhancement of clot dissolution. Current strategies can be broadly categorized as anticoagulants, antiplatelet agents, and fibrinolytics. This review focuses on the pharmacology of current antiplatelet therapy primarily targeting the inhibition of the enzyme cyclooxygenase 1, the P2Y12 receptor, the glycoprotein IIb/IIIa receptor, and protease-activated receptor 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gurbel PA, Tantry US. Do platelet function testing and genotyping improve outcome in patients treated with antithrombotic agents?: platelet function testing and genotyping improve outcome in patients treated with antithrombotic agents. Circulation. 2012;125:1276–87.

    Article  PubMed  Google Scholar 

  2. Gurbel PA, Bliden KP, Hayes KM, et al. Platelet activation in myocardial ischemic syndromes. Expert Rev Cardiovasc Ther. 2004;2:535–45.

    Article  PubMed  CAS  Google Scholar 

  3. Matetzky S, Shenkman B, Guetta V, et al. Clopidogrel resistance is associated with increased risk of recurrent atherothrombotic events in patients with acute myocardial infarction. Circulation. 2004;109:3171–5.

    Article  PubMed  CAS  Google Scholar 

  4. Barragan P, Bouvier JL, Roquebert PO, Macaluso G, et al. Resistance to thienopyridines: clinical detection of coronary stent thrombosis by monitoring of vasodilator-stimulated phosphoprotein phosphorylation. Catheter Cardiovasc Interv. 2003;59:295–302.

    Article  PubMed  Google Scholar 

  5. Gurbel PA, Bliden KP, Samara W, et al. Clopidogrel effect on platelet reactivity in patients with stent thrombosis: results of the CREST study. J Am Coll Cardiol. 2005;46:1827–32.

    Article  PubMed  CAS  Google Scholar 

  6. Gurbel PA, Bliden KP, Zaman KA, Yoho, et al. Clopidogrel loading with eptifibatide to arrest the reactivity of platelets: results of the Clopidogrel loading with Eptifibatide to Arrest the Reactivity of Platelets (CLEAR PLATELETS) study. Circulation. 2005;111:1153–9.

    Article  PubMed  CAS  Google Scholar 

  7. Gurbel PA, Bliden KP, Guyer K, et al. Platelet reactivity in patients and recurrent events post-stenting: results of the PREPARE POST-STENTING study. J Am Coll Cardiol. 2005;46:1820–6.

    Article  PubMed  CAS  Google Scholar 

  8. Patrono C, Baigent C, Hirsh J, et al. American College of Chest Physicians: antiplatelet drugs: American College of Chest Physicians evidence-based clinical practice guidelines (8th edition). Chest. 2008;133(6 Suppl):199S–233S.

    Article  PubMed  CAS  Google Scholar 

  9. Gurbel PA, Tantry US. Combination antithrombotic therapies. Circulation. 2010;121:569–83.

    Article  PubMed  Google Scholar 

  10. Tantry US, Mahla E, Gurbel PA. Aspirin resistance. Prog Cardiovasc Dis. 2009;52:141–52.

    Article  PubMed  CAS  Google Scholar 

  11. Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971;231:232–5.

    Article  PubMed  CAS  Google Scholar 

  12. Roth GJ, Stanford N, Majerus PW. Acetylation of prostaglandin synthase by aspirin. Proc Natl Acad Sci U S A. 1975;72:3073–6.

    Article  PubMed  CAS  Google Scholar 

  13. Loll PJ, Picot D, Garavito RM. The structural basis of aspirin activity inferred from the crystal structure of inactivated prostaglandin H2 synthase. Nat Struct Biol. 1995;2:637–43.

    Article  PubMed  CAS  Google Scholar 

  14. Bjornsson TD, Schneider DE, Berger Jr H. Aspirin acetylates fibrinogen and enhances fibrinolysis. Fibrinolytic effect is independent of changes in plasminogen activator levels. J Pharmacol Exp Ther. 1989;250:154–61.

    PubMed  CAS  Google Scholar 

  15. Undas A, Brummel-Ziedins KE, Mann KG. Antithrombotic properties of aspirin and resistance to aspirin: beyond strictly antiplatelet actions. Blood. 2007;109:2285–92.

    Article  PubMed  CAS  Google Scholar 

  16. Rocca B, Secchiero P, Ciabattoni G, et al. Cyclooxygenase-2 expression is induced during human megakaryopoiesis and characterizes newly formed platelets. Proc Natl Acad Sci U S A. 2002;99:7634–9.

    Article  PubMed  CAS  Google Scholar 

  17. Zimmermann N, Wenk A, Kim U, et al. Functional and biochemical evaluation of platelet aspirin resistance after coronary artery bypass surgery. Circulation. 2003;108:542–7.

    Article  PubMed  CAS  Google Scholar 

  18. Hovens MM, Snoep JD, Eikenboom JC, et al. Prevalence of persistent platelet reactivity despite use of aspirin: a systematic review. Am Heart J. 2007;153:175–81.

    Article  PubMed  CAS  Google Scholar 

  19. Lev EI, Patel RT, Maresh KJ, et al. Aspirin and clopidogrel drug response in patients undergoing percutaneous coronary intervention: the role of dual drug resistance. J Am Coll Cardiol. 2006;47:27–3.

    Article  PubMed  CAS  Google Scholar 

  20. Dichiara J, Bliden KP, Tantry US, et al. Platelet function measured by VerifyNow identifies generalized high platelet reactivity in aspirin treated patients. Platelets. 2007;18:414–23.

    Article  PubMed  CAS  Google Scholar 

  21. Gurbel PA, Bliden KP, DiChiara J, et al. Evaluation of dose-related effects of aspirin on platelet function: results from the Aspirin-Induced Platelet Effect (ASPECT) study. Circulation. 2007;115:3156–64.

    Article  PubMed  CAS  Google Scholar 

  22. Herbert J, Frehel D, Vallee E, et al. Clopidogrel, a novel antiplatelet and antithrombotic agent. Cardiovasc Drug Rev. 1993;11:180–98.

    Article  CAS  Google Scholar 

  23. Kurihara A, Hagihara K, Kazui M, et al. In vitro metabolism of antiplatelet agent clopidogrel: cytochrome P450 isoforms responsible for two oxidation steps involved in the active metabolite formation. Drug Metab Rev. 2005;37 Suppl 2:99.

    Google Scholar 

  24. Mega JL, Close SL, Wiviott SD, et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med. 2009;360:354–62.

    Article  PubMed  CAS  Google Scholar 

  25. Savi P, Zachayus JL, Delesque-Touchard N, et al. The active metabolite of Clopidogrel disrupts P2Y12 receptor oligomers and partitions them out of lipid rafts. Proc Natl Acad Sci U S A. 2006;103:11069–74.

    Article  PubMed  CAS  Google Scholar 

  26. Gurbel PA, Tantry US. Drug insight: clopidogrel nonresponsiveness. Nat Clin Pract Cardiovasc Med. 2006;3:387–95.

    Article  PubMed  CAS  Google Scholar 

  27. Gurbel PA, Bliden KP, Antonio MJ, et al. Time dependence of clopidogrel loading effect: platelet activation versus platelet aggregation. Thromb Res. 2012;129:1–2.

    Article  PubMed  CAS  Google Scholar 

  28. Von Beckerath N, Taubert D, Pogatsa-Murray G, et al. Absorption, metabolization, and antiplatelet effects of 300-, 600-, and 900-mg loading doses of clopidogrel: results of the ISAR-CHOICE (Intracoronary Stenting and Antithrombotic Regimen: Choose Between 3 High Oral Doses for Immediate Clopidogrel Effect) trial. Circulation. 2005;112:2946–50.

    Google Scholar 

  29. Price MJ, Berger PB, Teirstein PS, et al. Standard- vs high-dose clopidogrel based on platelet function testing after percutaneous coronary intervention: the GRAVITAS randomized trial. JAMA. 2011;305:1097–105.

    Article  PubMed  CAS  Google Scholar 

  30. Mehta SR, Tanguay JF, Eikelboom JW, et al. Double-dose versus standard-dose clopidogrel and high-dose versus low-dose aspirin in individuals undergoing percutaneous coronary intervention for acute coronary syndromes(CURRENT-OASIS 7): a randomised factorial trial. Lancet. 2010;376:1233–43.

    Article  PubMed  CAS  Google Scholar 

  31. Cadroy Y, Bossavy JP, Thalamas C, et al. Early potent antithrombotic effect with combined aspirin and a loading dose of clopidogrel on experimental arterial thrombogenesis in humans. Circulation. 2000;101:2823–8.

    Article  PubMed  CAS  Google Scholar 

  32. Aleil B, Ravanat C, Cazenave JP, et al. Flow cytometric analysis of intraplatelet VASP phosphorylation for the detection of clopidogrel resistance in patients with ischemic cardiovascular diseases. J Thromb Haemost. 2005;3:85–92.

    Article  PubMed  CAS  Google Scholar 

  33. Taubert D, von Beckerath N, Grimberg G, et al. Impact of P-glycoprotein on clopidogrel absorption. Clin Pharmacol Ther. 2006;80:486–501.

    Article  PubMed  CAS  Google Scholar 

  34. Simon T, Verstuyft C, Mary-Krause M, et al. Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J Med. 2009;360:363–75.

    Article  PubMed  CAS  Google Scholar 

  35. Shuldiner AR, O'Connell JR, Bliden KP, et al. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA. 2009;302:849–57.

    Article  PubMed  CAS  Google Scholar 

  36. Mega JL, Simon T, Collet JP, et al. Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis. JAMA. 2010;304:1821–30.

    Article  PubMed  CAS  Google Scholar 

  37. Lau WC, Gurbel PA, Carville DG, et al. Saint Johns wort enhances clopidogrel responsiveness in clopidogrel resistant volunteers and patients by induction of CYP3A4 isoenzyme. J Am Coll Cardiol. 2007;49:343A.

    Google Scholar 

  38. Gurbel PA, Bliden KP, Logan DK, et al. The influence of smoking status on the pharmacokinetics and pharmacodynamics of clopidogrel and prasugrel: the PARADOX study. J Am Coll Cardiol. 2013;62:505–12.

    Article  PubMed  CAS  Google Scholar 

  39. Lau WC, Waskell LA, Watkins PB, et al. Atorvastatin reduces the ability of clopidogrel to inhibit platelet aggregation: a new drug-drug interaction. Circulation. 2003;107:32–7.

    Article  PubMed  CAS  Google Scholar 

  40. Gilard M, Arnaud B, Cornily JC, et al. Influence of omeprazole on the antiplatelet action of clopidogrel associated with aspirin: the randomized, double-blind OCLA (Omeprazole Clopidogrel Aspirin) study. J Am Coll Cardiol. 2008;51:256–60.

    Article  PubMed  CAS  Google Scholar 

  41. Siller-Matula JM, Lang I, Christ G, et al. Calcium-channel blockers reduce the antiplatelet effect of clopidogrel. J Am Coll Cardiol. 2008;52:1557–63.

    Article  PubMed  CAS  Google Scholar 

  42. Erlinge D, Varenhorst C, Braun OO, et al. Patients with poor responsiveness to thienopyridine treatment or with diabetes have lower levels of circulating active metabolite, but their platelets respond normally to active metabolite added ex vivo. J Am Coll Cardiol. 2008;52:1968–77.

    Article  PubMed  CAS  Google Scholar 

  43. Sibbing D, von Beckerath O, Schömig A, et al. Impact of body mass index on platelet aggregation after administration of a high loading dose of 600 mg of clopidogrel before percutaneous coronary intervention. Am J Cardiol. 2007;100:203–5.

    Article  PubMed  CAS  Google Scholar 

  44. Angiolillo DJ, Fernandez-Ortiz A, Bernardo E, et al. Platelet aggregation according to body mass index in patients undergoing coronary stenting: should clopidogrel loading-dose be weight adjusted? J Invasive Cardiol. 2004;4:169–74.

    Google Scholar 

  45. Small DS, Farid NA, Payne CD, et al. Effect of intrinsic and extrinsic factors on the clinical pharmacokinetics and pharmacodynamics of prasugrel. Clin Pharmacokinet. 2010;49:777–98.

    Article  PubMed  CAS  Google Scholar 

  46. Farid NA, Smith RL, Gillespie TA, et al. The disposition of prasugrel, a novel thienopyridine, in humans. Drug Metab Dispos. 2007;35:1096–104.

    Article  PubMed  CAS  Google Scholar 

  47. Farid NA, Payne CD, Small DS, et al. Cytochrome P450 3A inhibition by ketoconazole affects prasugrel and clopidogrel pharmacokinetics and pharmacodynamics differently. Clin Pharmacol Ther. 2007;81:735–41.

    Article  PubMed  CAS  Google Scholar 

  48. Wrishko RE, Ernest II CS, Small DS, et al. Population pharmacokinetic analyses to evaluate the influence of intrinsic and extrinsic factors on exposure of prasugrel active metabolite in TRITON-TIMI 38. J Clin Pharmacol. 2009;49:984–98.

    Article  PubMed  CAS  Google Scholar 

  49. Ernest II CS, Small DS, Rohatagi S, et al. Population pharmacokinetics and pharmacodynamics of prasugrel and clopidogrel in aspirin-treated patients with stable coronary artery disease. J Pharmacokinet Pharmacodyn. 2008;35:593–618.

    Article  PubMed  CAS  Google Scholar 

  50. Wiviott SD, Braunwald E, McCabe CH, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2007;357:2001–15.

    Article  PubMed  CAS  Google Scholar 

  51. Bonello L, Pansieri M, Mancini J, et al. High on-treatment platelet reactivity after prasugrel loading dose and cardiovascular events after percutaneous coronary intervention in acute coronary syndromes. J Am Coll Cardiol. 2011;58:467–73.

    Article  PubMed  CAS  Google Scholar 

  52. Alexopoulos D. Prasugrel resistance: fact or fiction. Platelets. 2012;23:83–90.

    Article  PubMed  CAS  Google Scholar 

  53. Mega JL, Close SL, Wiviott SD, et al. Cytochrome P450 genetic polymorphisms and the response to prasugrel: relationship to pharmacokinetic, pharmacodynamic, and clinical outcomes. Circulation. 2009;119:2553–60.

    Article  PubMed  CAS  Google Scholar 

  54. Neubauer H, Kaiser A, Busse B, et al. Identification, evaluation and treatment of prasugrel low-response after coronary stent implantation—a preliminary study. Thromb Res. 2010;126:e389.

    Article  PubMed  CAS  Google Scholar 

  55. Teng R, Oliver S, Hayes MA, et al. Absorption, distribution, metabolism, and excretion of ticagrelor in healthy subjects. Drug Metab Dispos. 2010;38:1514–21.

    Article  PubMed  CAS  Google Scholar 

  56. Teng R, Mitchell PD, Butler K. Lack of significant food effect on the pharmacokinetics of ticagrelor in healthy volunteers. J Clin Pharm Ther. 2012;37:464–8.

    Article  PubMed  CAS  Google Scholar 

  57. van Giezen JJ, Berntsson P, Zachrisson H, et al. Comparison of ticagrelor and thienopyridine P2Y12 binding characteristics and antithrombotic and bleeding effects in rat and dog models of thrombosis/hemostasis. Thromb Res. 2009;124:565–71.

    Article  PubMed  Google Scholar 

  58. Zhou D, Andersson TB, Grimm SW. In vitro evaluation of potential drug–drug interactions with ticagrelor: cytochrome P450 reaction phenotyping, inhibition, induction, and differential kinetics. Drug Metab Dispos. 2011;39:703–10.

    Article  PubMed  CAS  Google Scholar 

  59. Goodman SG, Clare R, Pieper KS, et al. Association of proton pump inhibitor use on cardiovascular outcomes with clopidogrel and ticagrelor: insights from the platelet inhibition and patient outcomes trial. Circulation. 2012;125:978–86.

    Article  PubMed  CAS  Google Scholar 

  60. AstraZeneca. BRILINTA® (ticagrelor) tablets, for healthcare professionals. http://www.brilintatouchpoints.com (2013).

  61. Parodi G, Valenti R, Bellandi B, et al. Comparison of prasugrel and ticagrelor loading doses in ST-segment elevation myocardial infarction patients: RAPID (Rapid Activity of Platelet Inhibitor Drugs) primary PCI study. J Am Coll Cardiol. 2013;61:1601–6.

    Article  PubMed  CAS  Google Scholar 

  62. Angiolillo DJ, Bhatt DL, Gurbel PA, et al. Advances in antiplatelet therapy: agents in clinical development. Am J Cardiol. 2009;103:40A–51A.

    Article  PubMed  CAS  Google Scholar 

  63. Angiolillo DJ, Schneider DJ, Bhatt DL, et al. Pharmacodynamic effects of cangrelor and clopidogrel: the platelet function substudy from the cangrelor versus standard therapy to achieve optimal management of platelet inhibition (CHAMPION) trials. J Thromb Thrombolysis. 2012;34:44–55.

    Article  PubMed  CAS  Google Scholar 

  64. Steinhubl SR, Oh JJ, Oestreich JH, et al. Transitioning patients from cangrelor to clopidogrel: pharmacodynamic evidence of a competitive effect. Thromb Res. 2008;121:527–34.

    Article  PubMed  CAS  Google Scholar 

  65. Willerson JT, Yao SK, McNatt J, et al. Frequency and severity of cyclic flow alternations and platelet aggregation predict the severity of neointimal proliferation following experimental coronary stenosis and endothelial injury. Proc Natl Acad Sci U S A. 1991;88:10624–8.

    Article  PubMed  CAS  Google Scholar 

  66. Morel O, Hugel B, Jesel L, et al. Circulating procoagulant microparticles and soluble GPV in myocardial infarction treated by primary percutaneous transluminal coronary angioplasty. A possible role for GPIIb-III antagonists. J Thromb Haemost. 2004;2:1118–26.

    Article  PubMed  CAS  Google Scholar 

  67. Schwarz M, Nordt T, Bode C, et al. The GP IIb/IIIa inhibitor abciximab (c7E3) inhibits the binding of various ligands to the leukocyte integrin Mac-1 (CD11b/CD18, αMβ2). Thromb Res. 2002;107:121–8.

    Article  PubMed  CAS  Google Scholar 

  68. Steiner S, Seidinger D, Huber K, et al. Effect of glycoprotein IIb/IIIa antagonist abciximab on monocyte-platelet aggregates and tissue factor expression. Arterioscler Thromb Vasc Biol. 2003;23:1697–702.

    Article  PubMed  CAS  Google Scholar 

  69. Ibbotson T, McGavin JK, Goa KL. Abciximab: an updated review of its therapeutic use in patients with ischaemic heart disease undergoing percutaneous coronary revascularisation. Drugs. 2003;63:1121–63.

    Article  PubMed  CAS  Google Scholar 

  70. Kondo K, Umemura K. Clinical pharmacokinetics of tirofiban, a nonpeptide glycoprotein IIb/IIIa receptor antagonist: comparison with the monoclonal antibody abciximab. Clin Pharmacokinet. 2002;41:187–95.

    Article  PubMed  CAS  Google Scholar 

  71. Curran MP, Keating GM. Eptifibatide: a review of its use in patients with acute coronary syndromes and/or undergoing percutaneous coronary intervention. Drugs. 2005;65:2009–35.

    Article  PubMed  CAS  Google Scholar 

  72. Gurbel PA, Jeong YH, Tantry US. Vorapaxar: a novel protease-activated receptor-1 inhibitor. Expert Opin Invest Drugs. 2011;20:1445–53.

    Article  CAS  Google Scholar 

  73. Coughlin SR. Thrombin signaling and protease-activated receptors. Nature. 2000;407:258–64.

    Article  PubMed  CAS  Google Scholar 

  74. Kasoglou T, Reyderman L, Robert R. Pharmacodynamics and pharmacokinetics of a novel protease-activated receptor (PAR-1) antangonist SCH 530348. Circulation. 2005;112:1132.

    Google Scholar 

  75. Becker BC, Moliterno DJ, Jennings LK, et al. Safety and tolerability of SCH 530348 in patients undergoing non-urgent percutaneous coronary intervention: a randomized, double-blind, placebo-controlled phase II study. Lancet. 2009;373:919–28.

    Article  PubMed  CAS  Google Scholar 

  76. Tricoci P, Huang Z, Held C, et al. Thrombin-receptor antagonist vorapaxar in acute coronary syndromes. N Engl J Med. 2012;366:20–33.

    Article  PubMed  CAS  Google Scholar 

  77. Morrow DA, Braunwald E, Bonaca MP, et al. Vorapaxar in the secondary prevention of atherothrombotic events. N Engl J Med. 2012;366:1404–13.

    Article  PubMed  CAS  Google Scholar 

  78. Zhang P, Gruber A, Kasuda S, et al. Suppression of arterial thrombosis without affecting hemostatic parameters with a cell-penetrating PAR1 pepducin. Circulation. 2012;126:83–91.

    Article  PubMed  CAS  Google Scholar 

  79. Covic L, Gresser AL, Talavera J, et al. Activation and inhibition of G protein-coupled receptors by cell-penetrating membranetetheredpeptides. Proc Natl Acad Sci U S A. 2002;99:643–8.

    Article  PubMed  CAS  Google Scholar 

  80. Covic L, Tchernychev B, Jacques S, et al. Pharmacology and in vivo efficacy of pepducins in hemostasis and arterial thrombosis. In: Langel U, editor. Handbook of cell-penetrating peptides. 2nd ed. New York: Taylor & Francis; 2007. p. 245–57.

    Google Scholar 

  81. Sevigny LM, Zhang P, Bohm A, et al. Interdicting protease-activated receptor-2-driven inflammation with cell-penetrating pepducins. Proc Natl Acad Sci U S A. 2011;108:8491–6.

    Article  PubMed  CAS  Google Scholar 

  82. Ratti S, Quarato P, Casagrande C, et al. Picotamide, an antithromboxane agent, inhibits the migration and proliferation of arterial myocytes. Eur J Pharmacol. 1998;355:77–83.

    Article  PubMed  CAS  Google Scholar 

  83. Celestini A, Violi F. A review of picotamide in the reduction of cardiovascular events in diabetic patients. Vasc Health Risk Manag. 2007;3:93–8.

    PubMed  CAS  Google Scholar 

  84. Violi F, Ghiselli A, Iuliano L, et al. Inhibition by picotamide of thromboxane production in vitro and ex vivo. Eur J Clin Pharmacol. 1988;33:599–602.

    Article  PubMed  CAS  Google Scholar 

  85. Gaussem P, Reny JL, Thalamus C, et al. The specific thromboxane receptor antagonist S18886: pharmacokinetic and pharmacodynamics studies. J Thromb Haemost. 2003;3:1437–45.

    Article  Google Scholar 

  86. Fiessinger JN, Bounameaux H, Cairols MA, et al. Thromboxane antagonism with terutroban in peripheral arterial disease: the TAIPAD study. J Thromb Haemost. 2010;8:2369–76.

    Article  PubMed  CAS  Google Scholar 

Download references

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Gurbel.

Additional information

This article is part of the Topical Collection on Genetics

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalra, K., Franzese, C.J., Gesheff, M.G. et al. Pharmacology of Antiplatelet Agents. Curr Atheroscler Rep 15, 371 (2013). https://doi.org/10.1007/s11883-013-0371-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-013-0371-3

Keywords

Navigation