Polyphenols, Inflammation, and Cardiovascular Disease

Abstract

Polyphenols are compounds found in foods such as tea, coffee, cocoa, olive oil, and red wine and have been studied to determine if their intake may modify cardiovascular disease (CVD) risk. Historically, biologic actions of polyphenols have been attributed to antioxidant activities, but recent evidence suggests that immunomodulatory and vasodilatory properties of polyphenols may also contribute to CVD risk reduction. These properties will be discussed, and recent epidemiological evidence and intervention trials will be reviewed. Further identification of polyphenols in foods and accurate assessment of exposures through measurement of biomarkers (i.e., polyphenol metabolites) could provide the needed impetus to examine the impact of polyphenol-rich foods on CVD intermediate outcomes (especially those signifying chronic inflammation) and hard endpoints among high risk patients. Although we have mechanistic insight into how polyphenols may function in CVD risk reduction, further research is needed before definitive recommendations for consumption can be made.

This is a preview of subscription content, access via your institution.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    García-Villalba R, Carrasco-Pancorbo A, Nevedomskaya E, et al. Exploratory analysis of human urine by LC-ESI-TOF MS after high intake of olive oil: understanding the metabolism of polyphenols. Anal Bioanal Chem. 2010;398:463–75.

    PubMed  Article  Google Scholar 

  2. 2.

    Marzocchella L, Fantini M, Benvenuto M, et al. Dietary flavonoids: molecular mechanisms of action as anti-inflammatory agents. Recent Pat Inflamm Allergy Drug Discov. 2011;5:200–20.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Gimeno E, Fito M, Lamuela-Raventos RM, et al. Effect of ingestion of virgin olive oil on human low-density lipoprotein composition. Eur J Clin Nutr. 2002;56:114–20.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    USDA Nutrient Data Laboratory: USDA database for flavonoids content of selected foods. Release 3.0. 2011. Available from: http://www.ars.usda.gov/nutrientdata,accessed December 2012.

  5. 5.

    Neveu V, Perez-Jimenez J, Vos F, et al. Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database (Oxford) 2010; 2010:ba024.

  6. 6.

    Rothwell JA, Urpi-Sarda M, Boto-Ordoñez M, et al. Phenol-Explorer 2.0: a major update of the Phenol-Explorer database integrating data on polyphenol metabolism and pharmacokinetics in humans and experimental animals. Database (Oxford) 2012, 2012.

  7. 7.

    Ovaskainen ML, Torronen R, Koponen JM, et al. Dietary intake and major food sources of polyphenols in Finnish adults. J Nutr. 2008;138:562–6.

    PubMed  CAS  Google Scholar 

  8. 8.

    Perez-Jimenez J, Fezeu L, Touvier M, et al. Dietary intake of 337 polyphenols in French adults. Am J Clin Nutr. 2011;93:1220–8.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    • Tresserra-Rimbau A, Medina-Remón A, Pérez-Jiménez J, et al. Dietary intake and major food sources of polyphenols in a Spanish population at high cardiovascular risk: The PREDIMED study. Nutr Metab Cardiovasc Dis 2013, in press. This group examines the total polyphenols and its classes including flavonoids and phenolic acids in diets of Spanish subjects in the PREDIMED trial. The distribution of polyphenols (from olives, and olive oils) is contrasted with those from the Su.VI.MAX (French) population sample. Both reports rely on composition data from the Phenol Explorer database.

  10. 10.

    Spencer JP, Abd El Mohsen MM, Minihane AM, Mathers JC. Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research. Br J Nutr. 2008;99:12–22.

    PubMed  CAS  Google Scholar 

  11. 11.

    Caruso D, Visioli F, Patelli R, et al. Urinary excretion of olive oil phenols and their metabolites in humans. Metabolism. 2001;50:1426–8.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Orozco-Solano MI, Ferreiro-Vera C, Priego-Capote F, Luque de Castro MD. Automated method for determination of olive oil phenols and metabolites in human plasma and application in intervention studies. J Chromatogr. 2012;1258:108–16.

    Article  CAS  Google Scholar 

  13. 13.

    de la Torre-Carbot K, Chavez-Servin JL, Jauregui O, et al. Elevated circulating LDL phenol levels in men who consumed virgin rather than refined olive oil are associated with less oxidation of plasma LDL. J Nutr. 2010;140:501–8.

    PubMed  Article  Google Scholar 

  14. 14.

    Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868–74.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med. 1999;340:115–26.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996;20:933–56.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Steffen Y, Gruber C, Schewe T, Sies H. Mono-O-methylated flavanols and other flavonoids as inhibitors of endothelial NADPH oxidase. Arch Biochem Biophys. 2008;469:209–19.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Borriello A, Cucciolla V, Della Ragione F, Galletti P. Dietary polyphenols: focus on resveratrol, a promising agent in the prevention of cardiovascular diseases and control of glucose homeostasis. Nutr Metab Cardiovasc Dis. 2010;20:618–25.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Ahsan MK, Lekli I, Ray D, et al. Redox regulation of cell survival by the thioredoxin superfamily: an implication of redox gene therapy in the heart. Antioxid Redox Signal. 2009;11:2741–58.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Xia N, Daiber A, Habermeier A, et al. Resveratrol reverses endothelial nitric-oxide synthase uncoupling in apolipoprotein E knockout mice. J Pharmacol Exp Ther. 2010;335:149–54.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Spanier G, Xu H, Xia N, et al. Resveratrol reduces endothelial oxidative stress by modulating the gene expression of superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPx1) and NADPH oxidase subunit (Nox4). J Physiol Pharmacol. 2009;60:111–6.

    PubMed  Google Scholar 

  22. 22.

    Ungvari Z, Bagi Z, Feher A, et al. Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. Am J Physiol Heart Circ Physiol. 2010;299:H18–24.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    • Kostyuk VA, Potapovich AI, Suhan TO, et al. Antioxidant and signal modulation properties of plant polyphenols in controlling vascular inflammation. Eur J Pharmacol 2011; 658:248-56. These researchers present endothelial cell culture studies that support the role of plant polyphenols in vascular inflammation as not only antioxidants but also as modulators of inflammatory redox signaling pathways.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Al-Awwadi NA, Araiz C, Bornet A, et al. Extracts enriched in different polyphenolic families normalize increased cardiac NADPH oxidase expression while having differential effects on insulin resistance, hypertension, and cardiac hypertrophy in high-fructose-fed rats. J Agric Food Chem. 2005;53:151–7.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Covas MI, Nyyssonen K, Poulsen HE, et al. The effect of polyphenols in olive oil on heart disease risk factors: a randomized trial. Ann Intern Med. 2006;145:333–41.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    •• Hollman PC, Cassidy A, Comte B, et al. The biological relevance of direct antioxidant effects of polyphenols for cardiovascular health in humans is not established. J Nutr 2011; 141:989S-1009S. This report reflects the consensus among international experts regarding the biological relevance of antioxidant effects of polyphenols in cardiovascular health and suggests a broader view of these bioactive compounds in modulation of inflammation balance.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Deng YH, Alex D, Huang HQ, et al. Inhibition of TNF–mediated endothelial cell-monocyte cell adhesion and adhesion molecules expression by the resveratrol derivative, trans-3,5,4′-trimethoxystilbene. Phytother Res. 2011;25:451–7.

    PubMed  CAS  Google Scholar 

  28. 28.

    Rius C, Abu-Taha M, Hermenegildo C, et al. Trans- but not cis-resveratrol impairs angiotensin-II-mediated vascular inflammation through inhibition of NF-kB activation and peroxisome proliferator-activated receptor-gamma upregulation. J Immunol. 2010;185:3718–27.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Olholm J, Paulsen SK, Cullberg KB, et al. Anti-inflammatory effect of resveratrol on adipokine expression and secretion in human adipose tissue explants. Int J Obes (Lond). 2010;34:1546–53.

    Article  CAS  Google Scholar 

  30. 30.

    Boesch-Saadatmandi C, Loboda A, Wagner AE, et al. Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: role of miR-155. J Nutr Biochem. 2011;22:293–9.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Andriantsitohaina R, Auger C, Chataigneau T, et al. Molecular mechanisms of the cardiovascular protective effects of polyphenols. Br J Nutr. 2012;108:1532–49.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Romero M, Jimenez R, Sanchez M, et al. Quercetin inhibits vascular superoxide production induced by endothelin-1: role of NADPH oxidase, uncoupled eNOS and PKC. Atherosclerosis. 2009;202:58–67.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Chalopin M, Tesse A, Martinez MC, et al. Estrogen receptor alpha as a key target of red wine polyphenols action on the endothelium. PLoS One. 2010;5:e8554.

    PubMed  Article  Google Scholar 

  34. 34.

    Duarte J, Andriambeloson E, Diebolt M, Andriantsitohaina R. Wine polyphenols stimulate superoxide anion production to promote calcium signaling and endothelial-dependent vasodilatation. Physiol Res. 2004;53:595–602.

    PubMed  CAS  Google Scholar 

  35. 35.

    Ndiaye M, Chataigneau M, Lobysheva I, et al. Red wine polyphenol-induced, endothelium-dependent NO-mediated relaxation is due to the redox-sensitive PI3-kinase/Akt-dependent phosphorylation of endothelial NO-synthase in the isolated porcine coronary artery. FASEB J. 2005;19:455–7.

    PubMed  CAS  Google Scholar 

  36. 36.

    Anselm E, Chataigneau M, Ndiaye M, et al. Grape juice causes endothelium-dependent relaxation via a redox-sensitive Src- and Akt-dependent activation of eNOS. Cardiovasc Res. 2007;73:404–13.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    • Chiva-Blanch G, Urpi-Sarda M, Llorach R, et al. Differential effects of polyphenols and alcohol of red wine on the expression of adhesion molecules and inflammatory cytokines related to atherosclerosis: A randomized clinical trial (American Journal of Clinical Nutrition (2012) 95; (326-34)). Am J Clin Nutr 2012, 95:1506. The report describes the findings from a randomized trial in which subjects of high cardiovascular risk were presented in crossover design: 30 g daily of red wine for 30 day, 30 g gin daily for the same period and 30 g daily of dealcoholized red wine to ascertain what constituents are responsible for observed changes in adhesion molecules and cytokines.

  38. 38.

    Estruch R, Martinez-Gonzalez MA, Corella D, et al. Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann Intern Med. 2006;145:1–11.

    PubMed  Article  Google Scholar 

  39. 39.

    Mena MP, Sacanella E, Vazquez-Agell M, et al. Inhibition of circulating immune cell activation: a molecular antiinflammatory effect of the Mediterranean diet. Am J Clin Nutr. 2009;89:248–56.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Dell’Agli M, Fagnani R, Mitro N, et al. Minor components of olive oil modulate proatherogenic adhesion molecules involved in endothelial activation. J Agric Food Chem. 2006;54:3259–64.

    PubMed  Article  Google Scholar 

  41. 41.

    Dell’Agli M, Fagnani R, Galli GV, et al. Olive oil phenols modulate the expression of metalloproteinase 9 in THP-1 cells by acting on nuclear factor-kappaB signaling. J Agric Food Chem. 2010;58:2246–52.

    PubMed  Article  Google Scholar 

  42. 42.

    Fitzpatrick DF, Hirschfield SL, Coffey RG. Endothelium-dependent vasorelaxing activity of wine and other grape products. Am J Physiol. 1993;265:H774–8.

    PubMed  CAS  Google Scholar 

  43. 43.

    Schini-Kerth VB, Auger C, Kim JH, et al. Nutritional improvement of the endothelial control of vascular tone by polyphenols: role of NO and EDHF. Pflugers Arch. 2010;459:853–62.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Duthie GG, Pedersen MW, Gardner PT, et al. The effect of whisky and wine consumption on total phenol content and antioxidant capacity of plasma from healthy volunteers. Eur J Clin Nutr. 1998;52:733–6.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Iwamoto Y, Maruhashi T, Fujii Y, et al. Intima-media thickness of brachial artery, vascular function, and cardiovascular risk factors. Arterioscler Thromb Vasc Biol. 2012;32:2295–303.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Agewall S, Wright S, Doughty RN, et al. Does a glass of red wine improve endothelial function? Eur Heart J. 2000;21:74–8.

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Engler MB, Engler MM, Chen CY, et al. Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults. J Am Coll Nutr. 2004;23:197–204.

    PubMed  CAS  Google Scholar 

  48. 48.

    • Hooper L, Kay C, Abdelhamid A, et al. Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: a systematic review and meta-analysis of randomized trials. Am J Clin Nutr 2012; 95:740-51. This paper is a thorough review of recent studies examining these polyphenol-rich foods on cardiovascular outcomes.

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Duffy SJ, Keaney Jr JF, Holbrook M, et al. Short- and long-term black tea consumption reverses endothelial dysfunction in patients with coronary artery disease. Circulation. 2001;104:151–6.

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Lekakis J, Rallidis LS, Andreadou I, et al. Polyphenolic compounds from red grapes acutely improve endothelial function in patients with coronary heart disease. Eur J Cardiovasc Prev Rehabil. 2005;12:596–600.

    PubMed  Article  Google Scholar 

  51. 51.

    Inaba Y, Chen JA, Bergmann SR. Prediction of future cardiovascular outcomes by flow-mediated vasodilatation of brachial artery: a meta-analysis. Int J Cardiovasc Imaging. 2010;26:631–40.

    PubMed  Article  Google Scholar 

  52. 52.

    Peterson JJ, Dwyer JT, Jacques PF, McCullough ML. Associations between flavonoids and cardiovascular disease incidence or mortality in European and US populations. Nutr Rev. 2012;70:491–508.

    PubMed  Article  Google Scholar 

  53. 53.

    Cassidy A, Rimm EB, O’Reilly EJ, et al. Dietary flavonoids and risk of stroke in women. Stroke. 2012;43:946–51.

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    McCullough ML, Peterson JJ, Patel R, et al. Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. Am J Clin Nutr. 2012;95:454–64.

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Hollman PC, Geelen A, Kromhout D. Dietary flavonol intake may lower stroke risk in men and women. J Nutr. 2010;140:600–4.

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Cassidy A, O’Reilly EJ, Kay C, et al. Habitual intake of flavonoid subclasses and incident hypertension in adults. Am J Clin Nutr. 2011;93:338–47.

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Samieri C, Feart C, Proust-Lima C, et al. Olive oil consumption, plasma oleic acid, and stroke incidence: the Three-City Study. Neurology. 2011;77:418–25.

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Erdman Jr JW, Balentine D, Arab L, et al. Flavonoids and heart health: proceedings of the ILSI North America Flavonoids Workshop, May 31-June 1, 2005, Washington, DC. J Nutr. 2007;137:718S–37.

    PubMed  CAS  Google Scholar 

  59. 59.

    Peterson J, Dwyer J, Adlercreutz H, et al. Dietary lignans: physiology and potential for cardiovascular disease risk reduction. Nutr Rev. 2010;68:571–603.

    PubMed  Article  Google Scholar 

  60. 60.

    USDA Nutrient Data Laboratory:USDA database for the isoflavone content of selected foods. Release 2.0. 2008. Available from: http://www.ars.usda.gov/nutrientdata,accessed December 2012.

  61. 61.

    USDA. Nutrient Data Laboratory:USDA database for proanthocyanidin content of selected foods. 2004, Available from: http://www.ars.usda.gov/nutrientdata,accessed December 2012.

  62. 62.

    Pérez-Jiménez J, Fezeu L, Touvier M, et al. Dietary intake of 337 polyphenols in French adults. Am J Clin Nutr. 2011;93:1220–8.

    PubMed  Article  Google Scholar 

  63. 63.

    Salas-Salvado J, Bullo M, Babio N, et al. Reduction in the incidence of type 2 diabetes with the Mediterranean diet: results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care. 2011;34:14–9.

    PubMed  Article  Google Scholar 

  64. 64.

    Salas-Salvado J, Fernandez-Ballart J, Ros E, et al. Effect of a Mediterranean diet supplemented with nuts on metabolic syndrome status: one-year results of the PREDIMED randomized trial. Arch Intern Med. 2008;168:2449–58.

    PubMed  Article  CAS  Google Scholar 

  65. 65.

    Medina-Remon A, Zamora-Ros R, Rotches-Ribalta M, et al. Total polyphenol excretion and blood pressure in subjects at high cardiovascular risk. Nutr Metab Cardiovasc Dis. 2011;21:323–31.

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Estruch R, Ros E, Salas-Salvado J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. New Engl J Med. 2013 doi:10.1056/NEJMoa200303.

Download references

Conflicts of Interest

Christy Tangney declares that she has no conflicts of interest.

Heather E. Rasmussen declares that she has no conflicts of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christy C. Tangney.

Additional information

This article is part of the Topical Collection on Vascular Biology

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tangney, C.C., Rasmussen, H.E. Polyphenols, Inflammation, and Cardiovascular Disease. Curr Atheroscler Rep 15, 324 (2013). https://doi.org/10.1007/s11883-013-0324-x

Download citation

Keywords

  • Polyphenols
  • Inflammation
  • Olive oil
  • Flavonoid
  • Phenolic acids
  • Flow-mediated vasodilation
  • Endothelial dysfunction
  • Cell signaling
  • Adhesion markers