Skip to main content
Log in

Imaging of Vulnerable Plaques Using Near-Infrared Spectroscopy for Risk Stratification of Atherosclerosis

  • Coronary Heart Disease (JA Farmer, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Although the prevalent approach in cardiology is largely “stenosis-centric,” it has been long known that most acute coronary events are caused by apparently angiographically nonsignificant stenosis. This has led to a gradual paradigm shift from detection of significant stenosis to detection of lesion instability. A number of imaging modalities have been developed that help in this quest; however, none have been as promising as near-infrared spectroscopy used for detection of coronary plaque characteristics. In this article we discuss the various invasive imaging tools available to the interventional cardiologist, with special emphasis on near-infrared spectroscopy as a key emerging imaging technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364(3):226–35. doi:10.1056/NEJMoa1002358.

    Article  PubMed  CAS  Google Scholar 

  2. •• Waxman S, Dixon SR, L'Allier P, Moses JW, Petersen JL, Cutlip D, et al. In vivo validation of a catheter-based near-infrared spectroscopy system for detection of lipid core coronary plaques: initial results of the SPECTACL study. JACC Cardiovasc Imaging. 2009;2(7):858–68. doi:10.1016/j.jcmg.2009.05.001. This was the first in vivo study evaluating the efficacy of NIRS for lipid-core-rich plaque detection.

    Article  PubMed  Google Scholar 

  3. • Stone PH, Saito S, Takahashi S, Makita Y, Nakamura S, Kawasaki T, et al. Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION study. Circulation. 2012. doi:10.1161/CIRCULATIONAHA.112.096438. This article is important because it correlates shear stress and arterial plaque characteristics with state-of-the-art invasive equipment.

  4. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation. 1995;92(3):657–71.

    Article  PubMed  CAS  Google Scholar 

  5. Falk E. Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis. Characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br Hear J. 1983;50(2):127–34.

    Article  CAS  Google Scholar 

  6. van der Wal AC, Becker AE, van der Loos CM, Das PK. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation. 1994;89(1):36–44.

    Article  PubMed  Google Scholar 

  7. Muller JE, Tawakol A, Kathiresan S, Narula J. New opportunities for identification and reduction of coronary risk: treatment of vulnerable patients, arteries, and plaques. J Am Coll Cardiol. 2006;47(8 Suppl):C2–6. doi:10.1016/j.jacc.2005.12.044.

    Article  PubMed  Google Scholar 

  8. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47(8 Suppl):C13–8. doi:10.1016/j.jacc.2005.10.065.

    Article  PubMed  CAS  Google Scholar 

  9. Glaser R, Selzer F, Faxon DP, Laskey WK, Cohen HA, Slater J, et al. Clinical progression of incidental, asymptomatic lesions discovered during culprit vessel coronary intervention. Circulation. 2005;111(2):143–9. doi:10.1161/01.CIR.0000150335.01285.12.

    Article  PubMed  Google Scholar 

  10. Gardner CM, Tan H, Hull EL, Lisauskas JB, Sum ST, Meese TM, et al. Detection of lipid core coronary plaques in autopsy specimens with a novel catheter-based near-infrared spectroscopy system. JACC Cardiovasc Imaging. 2008;1(5):638–48. doi:10.1016/j.jcmg.2008.06.001.

    Article  PubMed  Google Scholar 

  11. Moreno PR, Lodder RA, Purushothaman KR, Charash WE, O'Connor WN, Muller JE. Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy. Circulation. 2002;105(8):923–7.

    Article  PubMed  Google Scholar 

  12. Abdel-Karim AR, Rangan BV, Banerjee S, Brilakis ES. Intercatheter reproducibility of near-infrared spectroscopy for the in vivo detection of coronary lipid core plaques. Catheter Cardiovasc Interv. 2011;77(5):657–61. doi:10.1002/ccd.22763.

    Article  PubMed  Google Scholar 

  13. Garcia BA, Wood F, Cipher D, Banerjee S, Brilakis ES. Reproducibility of near-infrared spectroscopy for the detection of lipid core coronary plaques and observed changes after coronary stent implantation. Catheter Cardiovasc Interv. 2010;76(3):359–65. doi:10.1002/ccd.22500.

    Article  PubMed  Google Scholar 

  14. Buja LM, Willerson JT. Role of inflammation in coronary plaque disruption. Circulation. 1994;89(1):503–5.

    Article  PubMed  CAS  Google Scholar 

  15. Uchida Y, Nakamura F, Tomaru T, Morita T, Oshima T, Sasaki T, et al. Prediction of acute coronary syndromes by percutaneous coronary angioscopy in patients with stable angina. Am Hear J. 1995;130(2):195–203.

    Article  CAS  Google Scholar 

  16. Madjid M, Willerson JT, Casscells SW. Intracoronary thermography for detection of high-risk vulnerable plaques. J Am Coll Cardiol. 2006;47(8 Suppl):C80–5. doi:10.1016/j.jacc.2005.11.050.

    Article  PubMed  Google Scholar 

  17. Casscells W, Hathorn B, David M, Krabach T, Vaughn WK, McAllister HA, et al. Thermal detection of cellular infiltrates in living atherosclerotic plaques: possible implications for plaque rupture and thrombosis. Lancet. 1996;347(9013):1447–51.

    Article  PubMed  CAS  Google Scholar 

  18. Jürgen H H-JS, Horst S, Ron W. Cardiovascular interventions in clinical practice. Wiley-Blackwell; 2010.

  19. Nair A, Kuban BD, Tuzcu EM, Schoenhagen P, Nissen SE, Vince DG. Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation. 2002;106(17):2200–6.

    Article  PubMed  Google Scholar 

  20. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.

    Article  PubMed  CAS  Google Scholar 

  21. Yun SH, Tearney GJ, Vakoc BJ, Shishkov M, Oh WY, Desjardins AE, et al. Comprehensive volumetric optical microscopy in vivo. Nature Med. 2006;12(12):1429–33. doi:10.1038/nm1450.

    PubMed  CAS  Google Scholar 

  22. • Cassis LA, Lodder RA. Near-IR imaging of atheromas in living arterial tissue. Anal Chem. 1993;65(9):1247–56. This is one of the earlier studies that used NIRS to detect atherosclerotic plaques in rabbits.

    Article  PubMed  CAS  Google Scholar 

  23. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20(5):1262–75.

    Article  PubMed  CAS  Google Scholar 

  24. Brugaletta S, Garcia-Garcia HM, Serruys PW, de Boer S, Ligthart J, Gomez-Lara J, et al. NIRS and IVUS for characterization of atherosclerosis in patients undergoing coronary angiography. JACC Cardiovasc Imaging. 2011;4(6):647–55. doi:10.1016/j.jcmg.2011.03.013.

    Article  PubMed  Google Scholar 

  25. •• Schultz CJ, Serruys PW, van der Ent M, Ligthart J, Mastik F, Garg S, et al. First-in-man clinical use of combined near-infrared spectroscopy and intravascular ultrasound: a potential key to predict distal embolization and no-reflow? J Am Coll Cardiol. 2010;56(4):314. doi:10.1016/j.jacc.2009.10.090. This was the first clinical study to evaluate the use of NIRS to guide distal coronary embolic prevention devices.

    Article  PubMed  Google Scholar 

  26. Brugaletta S, Garcia-Garcia HM, Serruys PW. Perspective on the use of true vessel characterization imaging in interventional cardiology clinical practice. Interv Cardiol. 2012;7:4.

    Google Scholar 

  27. TVC Insight™ catheter. 2012. http://www.infraredx.com/tvc-insight-catheter/.

  28. Goldstein JA, Grines C, Fischell T, Virmani R, Rizik D, Muller J, et al. Coronary embolization following balloon dilation of lipid-core plaques. JACC Cardiovasc Imaging. 2009;2(12):1420–4. doi:10.1016/j.jcmg.2009.10.003.

    Article  PubMed  Google Scholar 

  29. •• Dixon SR, Grines CL, Munir A, Madder RD, Safian RD, Hanzel GS, et al. Analysis of target lesion length before coronary artery stenting using angiography and near-infrared spectroscopy versus angiography alone. Am J Cardiol. 2012;109(1):60–6. doi:10.1016/j.amjcard.2011.07.068. This is a great study evaluating the potential use of NIRS in guiding optimal PCI.

    Article  PubMed  Google Scholar 

  30. Waxman S, Freilich MI, Suter MJ, Shishkov M, Bilazarian S, Virmani R, et al. A case of lipid core plaque progression and rupture at the edge of a coronary stent: elucidating the mechanisms of drug-eluting stent failure. Circ Cardiovasc Interv. 2010;3(2):193–6. doi:10.1161/CIRCINTERVENTIONS.109.917955.

    Article  PubMed  Google Scholar 

  31. Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol. 2007;49(25):2379–93. doi:10.1016/j.jacc.2007.02.059.

    Article  PubMed  CAS  Google Scholar 

  32. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282(21):2035–42.

    Article  PubMed  CAS  Google Scholar 

  33. Stone PH, Coskun AU, Kinlay S, Clark ME, Sonka M, Wahle A, et al. Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: in vivo 6-month follow-up study. Circulation. 2003;108(4):438–44. doi:10.1161/01.CIR.0000080882.35274.AD.

    Article  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Chilton.

Additional information

This article is part of the Topical Collection on Coronary Heart Disease

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanon, S., Dao, T., Sanon, V.P. et al. Imaging of Vulnerable Plaques Using Near-Infrared Spectroscopy for Risk Stratification of Atherosclerosis. Curr Atheroscler Rep 15, 304 (2013). https://doi.org/10.1007/s11883-012-0304-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-012-0304-6

Keywords

Navigation