Unprocessed Red and Processed Meats and Risk of Coronary Artery Disease and Type 2 Diabetes – An Updated Review of the Evidence

Abstract

Growing evidence suggests that effects of red meat consumption on coronary heart disease (CHD) and type 2 diabetes could vary depending on processing. We reviewed the evidence for effects of unprocessed (fresh/frozen) red and processed (using sodium/other preservatives) meat consumption on CHD and diabetes. In meta-analyses of prospective cohorts, higher risk of CHD is seen with processed meat consumption (RR per 50 g: 1.42, 95 %CI = 1.07–1.89), but a smaller increase or no risk is seen with unprocessed meat consumption. Differences in sodium content (~400 % higher in processed meat) appear to account for about two-thirds of this risk difference. In similar analyses, both unprocessed red and processed meat consumption are associated with incident diabetes, with higher risk per g of processed (RR per 50 g: 1.51, 95 %CI = 1.25–1.83) versus unprocessed (RR per 100 g: 1.19, 95 % CI = 1.04–1.37) meats. Contents of heme iron and dietary cholesterol may partly account for these associations. The overall findings suggest that neither unprocessed red nor processed meat consumption is beneficial for cardiometabolic health, and that clinical and public health guidance should especially prioritize reducing processed meat consumption.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    •• Micha R, Wallace SK, Mozaffarian D. Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes mellitus: a systematic review and meta-analysis. Circulation. 2010;121(21):2271–83. The first systematic review and meta-analysis that assessed relationships between unprocessed red and processed meat consumption and risk of incident coronary heart disease, stroke, and type 2 diabetes. This meta-analysis provided evidence that the effects of meat consumption on cardiometabolic outcomes might vary depending on the extent of processing i.e., whether or not the meat is fresh (unprocessed) or has been processed and preserved for long-term storage, typically by adding high amounts of salt, as well as other preservatives such as nitrates.

    PubMed  Article  Google Scholar 

  2. 2.

    Mozaffarian D, Wu JH. Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol. 2011;58(20):2047–67.

    PubMed  CAS  Article  Google Scholar 

  3. 3.

    Turesky RJ, Le Marchand L. Metabolism and biomarkers of heterocyclic aromatic amines in molecular epidemiology studies: lessons learned from aromatic amines. Chem Res Toxicol. 2011;24(8):1169–214.

    PubMed  CAS  Article  Google Scholar 

  4. 4.

    Mozaffarian D. Chapter 48: Nutrition and Cardiovascular Diseases, in Braunwald's Heart Disease: a Textbook of Cardiovascular Medicine. 2012: Philadelphia.

  5. 5.

    Institute of Medicine of the National Academies, Evaluation of Biomarkers and Surrogate Endpoints in Chronic Disease. 2010.

  6. 6.

    Micha R, Kalantarian S, Wirojratana P, et al. Estimating the global and regional burden of suboptimal nutrition on chronic disease: methods and inputs to the analysis. Eur J Clin Nutr. 2012;66(1):119–29.

    PubMed  CAS  Article  Google Scholar 

  7. 7.

    World Health Organization, Diet, nutrition and the prevention of chronic diseases: report of a joint WHO/FAO expert consultation, in World Health Organ Tech Rep Ser. 916: i–viii. 2003: Geneva. p. 1–149.

  8. 8.

    Hill AB. The Environment and Disease: association or Causation? Proc R Soc Med. 1965;58:295–300.

    PubMed  CAS  Google Scholar 

  9. 9.

    World Cancer Research Fund/ American Institute for Cancer Research, Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective. 2007: Washington DC: AICR.

  10. 10.

    Whiteman D, Muir J, Jones L, et al. Dietary questions as determinants of mortality: the OXCHECK experience. Public Health Nutr. 1999;2(4):477–87.

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    Ascherio A, Willett WC, Rimm EB, et al. Dietary iron intake and risk of coronary disease among men. Circulation. 1994;89(3):969–74.

    PubMed  CAS  Article  Google Scholar 

  12. 12.

    Burke V, Zhao Y, Lee AH, et al. Health-related behaviours as predictors of mortality and morbidity in Australian Aborigines. Prev Med. 2007;44(2):135–42.

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Martinez-Gonzalez MA, Fernandez-Jarne E, Serrano-Martinez M, et al. Mediterranean diet and reduction in the risk of a first acute myocardial infarction: an operational healthy dietary score. Eur J Nutr. 2002;41(4):153–60.

    PubMed  Article  Google Scholar 

  14. 14.

    Liu J, Stampfer MJ, Hu FB, et al. Dietary iron and red meat intake and risk of coronary heart disease in postmenopausal women. Am J Epidemiol. 2003;157:S100.

    Google Scholar 

  15. 15.

    Sinha R, Cross AJ, Graubard BI, et al. Meat intake and mortality: a prospective study of over half a million people. Arch Intern Med. 2009;169(6):562–71.

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    • Bernstein AM, Sun Q, Hu FB, et al. Major dietary protein sources and risk of coronary heart disease in women. Circulation. 2010;122(9):876–83. Bernstein and colleagues evaluated the association between unprocessed red and processed meat consumption and incidence of coronary heart disease in the Nurse’s Health Study cohort.

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    • Pan A, Sun Q, Bernstein AM, et al. Red meat consumption and mortality: results from 2 prospective cohort studies. Arch Intern Med. 2012;172(7):555–63. Pan and colleagues evaluated the Nurse’s Health Study and the Health Professionals Follow-up Study cohort to assess the associations between unprocessed red and processed meat consumption and risk of CVD death.

    PubMed  Article  Google Scholar 

  18. 18.

    • Pan A, Sun Q, Bernstein AM, et al. Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. Am J Clin Nutr. 2011;94(4):1088–96. An updated meta-analysis, using the methods reported in our meta-analysis [1], which evaluated the relationship between unprocessed red and processed meat consumption and incident type 2 diabetes, including our previously identified studies plus updated findings from three Harvard cohorts [19–21].

    PubMed  CAS  Article  Google Scholar 

  19. 19.

    Fung TT, Schulze M, Manson JE, et al. Dietary patterns, meat intake, and the risk of type 2 diabetes in women. Arch Intern Med. 2004;164(20):2235–40.

    PubMed  Article  Google Scholar 

  20. 20.

    Schulze MB, Manson JE, Willett WC, et al. Processed meat intake and incidence of Type 2 diabetes in younger and middle-aged women. Diabetologia. 2003;46(11):1465–73.

    PubMed  CAS  Article  Google Scholar 

  21. 21.

    van Dam RM, Willett WC, Rimm EB, et al. Dietary fat and meat intake in relation to risk of type 2 diabetes in men. Diabetes Care. 2002;25(3):417–24.

    PubMed  Article  Google Scholar 

  22. 22.

    Song Y, Manson JE, Buring JE, et al. A prospective study of red meat consumption and type 2 diabetes in middle-aged and elderly women: the women's health study. Diabetes Care. 2004;27(9):2108–15.

    PubMed  CAS  Article  Google Scholar 

  23. 23.

    Villegas R, Shu XO, Gao YT, et al. The association of meat intake and the risk of type 2 diabetes may be modified by body weight. Int J Med Sci. 2006;3(4):152–9.

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    • Fretts AM, Howard BV, McKnight B, et al. Associations of processed meat and unprocessed red meat intake with incident diabetes: the Strong Heart Family Study. Am J Clin Nutr. 2012;95(3):752–8. Fretts and colleagues evaluated relationships between unprocessed red and processed meat consumption and incident diabetes in the Strong Heart Family Study cohort, in a population of American Indians characterized by relative high rates of obesity and diabetes.

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    Jakobsen MU, O'Reilly EJ, Heitmann BL, et al. Major types of dietary fat and risk of coronary heart disease: a pooled analysis of 11 cohort studies. Am J Clin Nutr. 2009;89(5):1425–32.

    PubMed  CAS  Article  Google Scholar 

  26. 26.

    Meyer KA, Kushi LH, Jacobs Jr DR, et al. Dietary fat and incidence of type 2 diabetes in older Iowa women. Diabetes Care. 2001;24(9):1528–35.

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Micha R, Mozaffarian D. Saturated fat and cardiometabolic risk factors, coronary heart disease, stroke, and diabetes: a fresh look at the evidence. Lipids. 2010;45(10):893–905.

    PubMed  CAS  Article  Google Scholar 

  28. 28.

    Feskens EJ, Virtanen SM, Rasanen L, et al. Dietary factors determining diabetes and impaired glucose tolerance. A 20-year follow-up of the Finnish and Dutch cohorts of the Seven Countries Study. Diabetes Care. 1995;18(8):1104–12.

    PubMed  CAS  Article  Google Scholar 

  29. 29.

    Galgani JE, Uauy RD, Aguirre CA, et al. Effect of the dietary fat quality on insulin sensitivity. Br J Nutr. 2008;100(3):471–9.

    PubMed  CAS  Article  Google Scholar 

  30. 30.

    Riserus U, Willett WC, Hu FB. Dietary fats and prevention of type 2 diabetes. Prog Lipid Res. 2009;48(1):44–51.

    PubMed  CAS  Article  Google Scholar 

  31. 31.

    de Oliveira Otto MC, Mozaffarian D, Kromhout D, et al. Dietary intake of saturated fat by food source and incident cardiovascular disease: the Multi-Ethnic Study of Atherosclerosis. Am J Clin Nutr. 2012;96(2):397–404.

    PubMed  Article  Google Scholar 

  32. 32.

    Djousse L, Gaziano JM. Dietary cholesterol and coronary artery disease: a systematic review. Curr Atheroscler Rep. 2009;11(6):418–22.

    PubMed  CAS  Article  Google Scholar 

  33. 33.

    Salmeron J, Hu FB, Manson JE, et al. Dietary fat intake and risk of type 2 diabetes in women. Am J Clin Nutr. 2001;73(6):1019–26.

    PubMed  CAS  Google Scholar 

  34. 34.

    Siri-Tarino PW, Sun Q, Hu FB, et al. Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. Am J Clin Nutr. 2010;91(3):535–46.

    PubMed  CAS  Article  Google Scholar 

  35. 35.

    Djousse L, Gaziano JM, Buring JE, et al. Egg consumption and risk of type 2 diabetes in men and women. Diabetes Care. 2009;32(2):295–300.

    PubMed  Article  Google Scholar 

  36. 36.

    Rajpathak S, Ma J, Manson J, et al. Iron intake and the risk of type 2 diabetes in women: a prospective cohort study. Diabetes Care. 2006;29(6):1370–6.

    PubMed  CAS  Article  Google Scholar 

  37. 37.

    Lee DH, Folsom AR, Jacobs Jr DR. Dietary iron intake and Type 2 diabetes incidence in postmenopausal women: the Iowa Women's Health Study. Diabetologia. 2004;47(2):185–94.

    PubMed  Article  Google Scholar 

  38. 38.

    Zhao Z, Li S, Liu G, et al. Body iron stores and heme-iron intake in relation to risk of type 2 diabetes: a systematic review and meta-analysis. PLoS One. 2012;7(7):e41641.

    PubMed  CAS  Article  Google Scholar 

  39. 39.

    Sacks FM, Campos H. Dietary therapy in hypertension. N Engl J Med. 2010;362(22):2102–12.

    PubMed  CAS  Article  Google Scholar 

  40. 40.

    He FJ, MacGregor GA. Effect of modest salt reduction on blood pressure: a meta-analysis of randomized trials. Implications for public health. J Hum Hypertens. 2002;16(11):761–70.

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    Singh G.M., Danaei G., Farzadfar F., et al., Effect sizes for cardiovascular disease and diabetes outcomes of metabolic risk factors for population-based comparative risk assessment (CRA). Int J Cardiol, 2012. Under Review.

  42. 42.

    Forstermann U. Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat Clin Pract Cardiovasc Med. 2008;5(6):338–49.

    PubMed  Article  Google Scholar 

  43. 43.

    McGrowder D, Ragoobirsingh D, Dasgupta T. Effects of S-nitroso-N-acetyl-penicillamine administration on glucose tolerance and plasma levels of insulin and glucagon in the dog. Nitric Oxide. 2001;5(4):402–12.

    PubMed  CAS  Article  Google Scholar 

  44. 44.

    Portha B, Giroix MH, Cros JC, et al. Diabetogenic effect of N-nitrosomethylurea and N-nitrosomethylurethane in the adult rat. Ann Nutr Aliment. 1980;34(5–6):1143–51.

    PubMed  CAS  Google Scholar 

  45. 45.

    Gajdosik A., Gajdosikova A , Stefek M., et al., Streptozotocin-induced experimental diabetes in male Wistar rats. Gen Physiol Biophys, 1999. 18 Spec No: p. 54–62.

  46. 46.

    Virtanen SM, Jaakkola L, Rasanen L, et al. Nitrate and nitrite intake and the risk for type 1 diabetes in Finnish children. Childhood Diabetes in Finland Study Group. Diabet Med. 1994;11(7):656–62.

    PubMed  CAS  Article  Google Scholar 

  47. 47.

    Parslow RC, McKinney PA, Law GR, et al. Incidence of childhood diabetes mellitus in Yorkshire, northern England, is associated with nitrate in drinking water: an ecological analysis. Diabetologia. 1997;40(5):550–6.

    PubMed  CAS  Article  Google Scholar 

  48. 48.

    Kleinbongard P, Dejam A, Lauer T, et al. Plasma nitrite concentrations reflect the degree of endothelial dysfunction in humans. Free Radic Biol Med. 2006;40(2):295–302.

    PubMed  CAS  Article  Google Scholar 

  49. 49.

    Pereira EC, Ferderbar S, Bertolami MC, et al. Biomarkers of oxidative stress and endothelial dysfunction in glucose intolerance and diabetes mellitus. Clin Biochem. 2008;41(18):1454–60.

    PubMed  CAS  Article  Google Scholar 

  50. 50.

    Binkova B, Smerhovsky Z, Strejc P, et al. DNA-adducts and atherosclerosis: a study of accidental and sudden death males in the Czech Republic. Mutat Res. 2002;501(1–2):115–28.

    PubMed  CAS  Google Scholar 

  51. 51.

    Lakshmi VM, Schut HA, Zenser TV. 2-Nitrosoamino-3-methylimidazo[4,5-f]quinoline activated by the inflammatory response forms nucleotide adducts. Food Chem Toxicol. 2005;43(11):1607–17.

    PubMed  CAS  Article  Google Scholar 

  52. 52.

    Bogen KT, Keating GA. U.S. dietary exposures to heterocyclic amines. J Expo Anal Environ Epidemiol. 2001;11(3):155–68.

    PubMed  CAS  Article  Google Scholar 

  53. 53.

    Anderson RN, Rosenberg HM. Disease classification: measuring the effect of the Tenth Revision of the International Classification of Diseases on cause-of-death data in the United States. Stat Med. 2003;22(9):1551–70.

    PubMed  Article  Google Scholar 

  54. 54.

    Mozaffarian D. Meat intake and mortality: evidence for harm, no effect, or benefit? Arch Intern Med. 2009;169(16):1537–8. author reply 1539.

    PubMed  Article  Google Scholar 

  55. 55.

    Salonen JT, Nyyssonen K, Korpela H, et al. High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men. Circulation. 1992;86(3):803–11.

    PubMed  CAS  Article  Google Scholar 

  56. 56.

    Kontogianni MD, Panagiotakos DB, Pitsavos C, et al. Relationship between meat intake and the development of acute coronary syndromes: the CARDIO2000 case-control study. Eur J Clin Nutr. 2008;62(2):171–7.

    PubMed  CAS  Article  Google Scholar 

  57. 57.

    Tavani A, Bertuzzi M, Gallus S, et al. Risk factors for non-fatal acute myocardial infarction in Italian women. Prev Med. 2004;39(1):128–34.

    PubMed  Article  Google Scholar 

  58. 58.

    Dietary Guidelines Advisory Committee. 2010 Dietary Guidelines For Americans. 2010 [cited Jan 31, 2011]; Available from: http://www.cnpp.usda.gov/Publications/DietaryGuidelines/2010/PolicyDoc/PolicyDoc.pdf.

  59. 59.

    Steinfeld H., Gerber P.,Wassenaar T., et al. Livestock's Long Shadow: Environmental Issues and Options, FAO, Editor. 2006: Rome.

  60. 60.

    Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey. [cited; Available from: http://www.cdc.gov.nchs/nhanes.htm.

  61. 61.

    Griesenbeck JS, Steck MD, Huber Jr JC, et al. Development of estimates of dietary nitrates, nitrites, and nitrosamines for use with the Short Willet Food Frequency Questionnaire. Nutr J. 2009;8:16.

    PubMed  Article  Google Scholar 

Download references

Disclosure

R. Micha: none; G. Michas: none; D. Mozaffarian: Received ad hoc honoraria from Nutrition Impact, Unilever, and SPRIM.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dariush Mozaffarian.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Micha, R., Michas, G. & Mozaffarian, D. Unprocessed Red and Processed Meats and Risk of Coronary Artery Disease and Type 2 Diabetes – An Updated Review of the Evidence. Curr Atheroscler Rep 14, 515–524 (2012). https://doi.org/10.1007/s11883-012-0282-8

Download citation

Keywords

  • Review
  • Meat
  • Red meat
  • Processed meat
  • Cardiovascular disease
  • Diabetes