Skip to main content

Advertisement

Log in

Mitochondrial Reactive Oxygen Species and Risk of Atherosclerosis

  • Vascular Biology (RS Rosenson, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

High levels of reactive oxygen species (ROS) are observed in chronic human diseases such as obesity, type 2 diabetes, atherosclerosis, and cardiovascular diseases. In addition to the presence of oxidative stress, these diseases are also characterized by deregulated inflammatory responses. Our first aim is to discuss distinct molecular pathways that determine the rate of mitochondrial ROS (mtROS) production and identify agents and enzymes that disrupt the balance between ROS generation and ROS elimination. Recent studies exploring the mechanisms linking ROS and inflammation found that ROS derived from mitochondria act as signal-transducing molecules that provoke endothelial dysfunction associated with uncoupling of nitric oxide synthase, induce the infiltration and activation of inflammatory cells, and increase apoptosis of endothelial and vascular smooth muscle cells. Therefore, our second aim is to give a comprehensive overview of the role of mtROS in all these processes contributing to atherosclerotic lesion progression and causing plaque erosion and rupture. Our third aim is to emphasize the role of the inflammatory toll-like receptor 2/NF-κB signaling pathway in the induction of pro-inflammatory cytokines and mtROS production in relation to insulin resistance, type 2 diabetes, and atherosclerosis. Because mtROS play an active role in several pathogenic mechanisms there is need for mitochondria-targeted antioxidants. Preliminary experiments in cell and animal models of cardiovascular diseases showed that some mitochondria-targeted antioxidants indeed reduce ROS production. However, wide-spread use in humans requires the development of specific and sensitive assays to evaluate mitochondrial oxidative stress and the development of orally active compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Recently published papers of interest have been highlighted as • Of importance

  1. Giordano FJ. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest. 2005;115:500–8.

    PubMed  CAS  Google Scholar 

  2. Ide T, Tsutsui H, Kinugawa S, Utsumi H, Kang D, Hattori N, et al. Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res. 1999;85:357–63.

    PubMed  CAS  Google Scholar 

  3. Genova ML, Pich MM, Biondi A, Bernacchia A, Falasca A, Bovina C, et al. Mitochondrial production of oxygen radical species and the role of Coenzyme Q as an antioxidant. Exp Biol Med (Maywood). 2003;228:506–13.

    CAS  Google Scholar 

  4. Toufektsian MC, Boucher FR, Tanguy S, Morel S, de Leiris JG. Cardiac toxicity of singlet oxygen: implication in reperfusion injury. Antioxid Redox Signal. 2001;3:63–9.

    Article  PubMed  CAS  Google Scholar 

  5. Seshiah PN, Weber DS, Rocic P, Valppu L, Taniyama Y, Griendling KK. Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators. Circ Res. 2002;91:406–13.

    Article  PubMed  CAS  Google Scholar 

  6. Xia Y, Tsai AL, Berka V, Zweier JL. Superoxide generation from endothelial nitric-oxide synthase. A Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process. J Biol Chem. 1998;273:25804–8.

    Article  PubMed  CAS  Google Scholar 

  7. Xia Y, Roman LJ, Masters BS, Zweier JL. Inducible nitric-oxide synthase generates superoxide from the reductase domain. J Biol Chem. 1998;273:22635–9.

    Article  PubMed  CAS  Google Scholar 

  8. Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res. 2000;86:494–501.

    PubMed  CAS  Google Scholar 

  9. Sawyer DB, Siwik DA, Xiao L, Pimentel DR, Singh K, Colucci WS. Role of oxidative stress in myocardial hypertrophy and failure. J Mol Cell Cardiol. 2002;34:379–88.

    Article  PubMed  CAS  Google Scholar 

  10. Holvoet P, Lee DH, Steffes M, Gross M, Jacobs Jr DR. Association between circulating oxidized low-density lipoprotein and incidence of the metabolic syndrome. JAMA. 2008;299:2287–93.

    Article  PubMed  CAS  Google Scholar 

  11. Hulsmans M, Holvoet P. The vicious circle between oxidative stress and inflammation in atherosclerosis. J Cell Mol Med. 2010;14:70–8.

    Article  PubMed  CAS  Google Scholar 

  12. Cosentino F, Eto M, De Paolis P, van der Loo B, Bachschmid M, Ullrich V, et al. High glucose causes upregulation of cyclooxygenase-2 and alters prostanoid profile in human endothelial cells: role of protein kinase C and reactive oxygen species. Circulation. 2003;107:1017–23.

    Article  PubMed  CAS  Google Scholar 

  13. Zhang M, Song P, Xu J, Zou MH. Activation of NAD(P)H oxidases by thromboxane A2 receptor uncouples endothelial nitric oxide synthase. Arterioscler Thromb Vasc Biol. 2011;31:125–32.

    Article  PubMed  Google Scholar 

  14. Gao L, Mann GE. Vascular NAD(P)H oxidase activation in diabetes: a double-edged sword in redox signalling. Cardiovasc Res. 2009;82:9–20.

    Article  PubMed  CAS  Google Scholar 

  15. Sipkens JA, Hahn N, van den Brand CS, Meischl C, Cillessen SA, Smith DE, et al. Homocysteine-Induced Apoptosis in Endothelial Cells Coincides With Nuclear NOX2 and Peri-nuclear NOX4 Activity. Cell Biochem.Biophys. 2011.

  16. Francia P, Cosentino F, Schiavoni M, Huang Y, Perna E, Camici GG, et al. p66(Shc) protein, oxidative stress, and cardiovascular complications of diabetes: the missing link. J Mol Med (Berl). 2009;87:885–91.

    Article  CAS  Google Scholar 

  17. Carpi A, Menabo R, Kaludercic N, Pelicci P, Di Lisa F, Giorgio M. The cardioprotective effects elicited by p66(Shc) ablation demonstrate the crucial role of mitochondrial ROS formation in ischemia/reperfusion injury. Biochim Biophys Acta. 2009;1787:774–80.

    Article  PubMed  CAS  Google Scholar 

  18. Cai W, Torreggiani M, Zhu L, Chen X, He JC, Striker GE, et al. AGER1 regulates endothelial cell NADPH oxidase-dependent oxidant stress via PKC-delta: implications for vascular disease. Am J Physiol Cell Physiol. 2010;298:C624–34.

    Article  PubMed  CAS  Google Scholar 

  19. Sick E, Brehin S, Andre P, Coupin G, Landry Y, Takeda K, et al. Advanced glycation end products (AGEs) activate mast cells. Br J Pharmacol. 2010;161:442–55.

    Article  PubMed  CAS  Google Scholar 

  20. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107:1058–70.

    Article  PubMed  CAS  Google Scholar 

  21. Azumi H, Inoue N, Ohashi Y, Terashima M, Mori T, Fujita H, et al. Superoxide generation in directional coronary atherectomy specimens of patients with angina pectoris: important role of NAD(P)H oxidase. Arterioscler Thromb Vasc Biol. 2002;22:1838–44.

    Article  PubMed  CAS  Google Scholar 

  22. Lefort N, Glancy B, Bowen B, Willis WT, Bailowitz Z, De Filippis EA, et al. Increased reactive oxygen species production and lower abundance of complex I subunits and carnitine palmitoyltransferase 1B protein despite normal mitochondrial respiration in insulin-resistant human skeletal muscle. Diabetes. 2010;59:2444–52.

    Article  PubMed  CAS  Google Scholar 

  23. Morgantini C, Natali A, Boldrini B, Imaizumi S, Navab M, Fogelman AM, et al. Anti-inflammatory and antioxidant properties of HDLs are impaired in type 2 diabetes. Diabetes. 2011;60:2617–23.

    Article  PubMed  CAS  Google Scholar 

  24. Besler C, Heinrich K, Rohrer L, Doerries C, Riwanto M, Shih DM, et al. Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease. J Clin Invest. 2011;121:2693–708.

    Article  PubMed  CAS  Google Scholar 

  25. Tai SC, Robb GB, Marsden PA. Endothelial nitric oxide synthase: a new paradigm for gene regulation in the injured blood vessel. Arterioscler Thromb Vasc Biol. 2004;24:405–12.

    Article  PubMed  CAS  Google Scholar 

  26. Echtay KS, Esteves TC, Pakay JL, Jekabsons MB, Lambert AJ, Portero-Otin M, et al. A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J. 2003;22:4103–10.

    Article  PubMed  CAS  Google Scholar 

  27. • Dada LA, Sznajder JI. Mitochondrial Ca(2)+ and ROS take center stage to orchestrate TNF-alpha-mediated inflammatory responses. J Clin Invest. 2011;121:1683–5. This article demonstrates mitochondrial Ca 2+ and ROS interaction in inflammatory response.

    Article  PubMed  CAS  Google Scholar 

  28. Hirotani S, Otsu K, Nishida K, Higuchi Y, Morita T, Nakayama H, et al. Involvement of nuclear factor-kappaB and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy. Circulation. 2002;105:509–15.

    Article  PubMed  CAS  Google Scholar 

  29. Almeida M, Han L, Ambrogini E, Weinstein RS, Manolagas SC. Glucocorticoids and tumor necrosis factor (TNF) alpha increase oxidative stress and suppress WNT signaling in osteoblasts. J Biol Chem. 2011

  30. Kasahara E, Sekiyama A, Hori M, Hara K, Takahashi N, Konishi M, et al. Mitochondrial density contributes to the immune response of macrophages to lipopolysaccharide via the MAPK pathway. FEBS Lett. 2011;585:2263–8.

    Article  PubMed  CAS  Google Scholar 

  31. Naik E, Dixit VM. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med. 2011;208:417–20.

    Article  PubMed  CAS  Google Scholar 

  32. Bulua AC, Simon A, Maddipati R, Pelletier M, Park H, Kim KY, et al. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med. 2011;208:519–33.

    Article  PubMed  CAS  Google Scholar 

  33. Di Lisa F, Bernardi P. Mitochondrial function and myocardial aging. A critical analysis of the role of permeability transition. Cardiovasc Res. 2005;66:222–32.

    Article  Google Scholar 

  34. Madamanchi NR, Runge MS. Mitochondrial dysfunction in atherosclerosis. Circ Res. 2007;100:460–73.

    Article  PubMed  CAS  Google Scholar 

  35. • Bonnard C, Durand A, Peyrol S, Chanseaume E, Chauvin MA, Morio B, et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest. 2008;118:789–800. This article shows that mitochondrial dysfunction results from intracellular ROS production.

    PubMed  CAS  Google Scholar 

  36. Paradies G, Petrosillo G, Pistolese M, Di Venosa N, Federici A, Ruggiero FM. Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart: involvement of reactive oxygen species and cardiolipin. Circ Res. 2004;94:53–9.

    Article  PubMed  CAS  Google Scholar 

  37. • Li J, Romestaing C, Han X, Li Y, Hao X, Wu Y, et al. Cardiolipin remodeling by ALCAT1 links oxidative stress and mitochondrial dysfunction to obesity. Cell Metab. 2010;12:154–65. This article links cardiolipin remodeling with mitochondrial dysfunction, mitochondrial ROS production, and insulin resistance.

    Article  PubMed  CAS  Google Scholar 

  38. Graziewicz MA, Day BJ, Copeland WC. The mitochondrial DNA polymerase as a target of oxidative damage. Nucleic Acids Res. 2002;30:2817–24.

    Article  PubMed  CAS  Google Scholar 

  39. Peng TI, Jou MJ. Oxidative stress caused by mitochondrial calcium overload. Ann N Y Acad Sci. 2010;1201:183–8.

    Article  PubMed  CAS  Google Scholar 

  40. Lebovitz RM, Zhang H, Vogel H, Cartwright Jr J, Dionne L, Lu N, et al. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci USA. 1996;93:9782–7.

    Article  PubMed  CAS  Google Scholar 

  41. Matsushima S, Ide T, Yamato M, Matsusaka H, Hattori F, Ikeuchi M, et al. Overexpression of mitochondrial peroxiredoxin-3 prevents left ventricular remodeling and failure after myocardial infarction in mice. Circulation. 2006;113:1779–86.

    Article  PubMed  CAS  Google Scholar 

  42. Nojiri H, Shimizu T, Funakoshi M, Yamaguchi O, Zhou H, Kawakami S, et al. Oxidative stress causes heart failure with impaired mitochondrial respiration. J Biol Chem. 2006;281:33789–801.

    Article  PubMed  CAS  Google Scholar 

  43. Zhang H, Luo Y, Zhang W, He Y, Dai S, Zhang R, et al. Endothelial-specific expression of mitochondrial thioredoxin improves endothelial cell function and reduces atherosclerotic lesions. Am J Pathol. 2007;170:1108–20.

    Article  PubMed  CAS  Google Scholar 

  44. • Tello D, Balsa E, Acosta-Iborra B, Fuertes-Yebra E, Elorza A, Ordonez A et al. Induction of the Mitochondrial NDUFA4L2 Protein by HIF-1alpha Decreases Oxygen Consumption by Inhibiting Complex I Activity. Cell Metab. 2011;14:768–79. This article shows that reducing mitochondrial Complex I activity via NDUFA4L2 appears to be an essential element in the mitochondrial reprogramming induced by HIF1.

  45. • Jensen KS, Binderup T, Jensen KT, Therkelsen I, Borup R, Nilsson E, et al. FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function. EMBO J. 2011;30:4554–70. This article defines a novel mechanism by which FOXO3A promotes metabolic adaptation and stress resistance in hypoxia (see also [46]).

    Article  PubMed  CAS  Google Scholar 

  46. • Chung YW, Kim HK, Kim IY, Yim MB, Chock PB. Dual function of protein kinase C (PKC) in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced manganese superoxide dismutase (MnSOD) expression: activation of CREB and FOXO3a by PKC-alpha phosphorylation and by PKC-mediated inactivation of Akt, respectively. J Biol Chem. 2011;286:29681–90. This article defines a novel mechanism by which FOXO3A promotes metabolic adaptation and stress resistance in hypoxia (see also [45]).

    Article  PubMed  CAS  Google Scholar 

  47. Zheng X, Yang Z, Yue Z, Alvarez JD, Sehgal A. FOXO and insulin signaling regulate sensitivity of the circadian clock to oxidative stress. Proc Natl Acad Sci USA. 2007;104:15899–904.

    Article  PubMed  CAS  Google Scholar 

  48. Moukdar F, Robidoux J, Lyght O, Pi J, Daniel KW, Collins S. Reduced antioxidant capacity and diet-induced atherosclerosis in uncoupling protein-2-deficient mice. J Lipid Res. 2009;50:59–70.

    Article  PubMed  CAS  Google Scholar 

  49. Blanc J, Alves-Guerra MC, Esposito B, Rousset S, Gourdy P, Ricquier D, et al. Protective role of uncoupling protein 2 in atherosclerosis. Circulation. 2003;107:388–90.

    Article  PubMed  CAS  Google Scholar 

  50. Ryu JW, Hong KH, Maeng JH, Kim JB, Ko J, Park JY, et al. Overexpression of uncoupling protein 2 in THP1 monocytes inhibits beta2 integrin-mediated firm adhesion and transendothelial migration. Arterioscler Thromb Vasc Biol. 2004;24:864–70.

    Article  PubMed  CAS  Google Scholar 

  51. Lee KU, Lee IK, Han J, Song DK, Kim YM, Song HS, et al. Effects of recombinant adenovirus-mediated uncoupling protein 2 overexpression on endothelial function and apoptosis. Circ Res. 2005;96:1200–7.

    Article  PubMed  CAS  Google Scholar 

  52. Cheng X, Siow RC, Mann GE. Impaired redox signaling and antioxidant gene expression in endothelial cells in diabetes: a role for mitochondria and the nuclear factor-E2-related factor 2-Kelch-like ECH-associated protein 1 defense pathway. Antioxid Redox Signal. 2011;14:469–87.

    Article  PubMed  CAS  Google Scholar 

  53. Devarajan A, Bourquard N, Hama S, Navab M, Grijalva VR, Morvardi S, et al. Paraoxonase 2 deficiency alters mitochondrial function and exacerbates the development of atherosclerosis. Antioxid Redox Signal. 2011;14:341–51.

    Article  PubMed  CAS  Google Scholar 

  54. • Park J, Lee J, Choi C. Mitochondrial network determines intracellular ROS dynamics and sensitivity to oxidative stress through switching inter-mitochondrial messengers. PLoS ONE. 2011;6:e23211. This article shows that mitochondrial network dynamics of mitochondrial distribution, density, activity, and size can mediate inter-mitochondrial signaling and determine the identity of the ROS signaling pattern.

    Article  PubMed  CAS  Google Scholar 

  55. Oliveira HC, Cosso RG, Alberici LC, Maciel EN, Salerno AG, Dorighello GG, et al. Oxidative stress in atherosclerosis-prone mouse is due to low antioxidant capacity of mitochondria. FASEB J. 2005;19:278–80.

    PubMed  CAS  Google Scholar 

  56. Davidson SM. Endothelial mitochondria and heart disease. Cardiovasc Res. 2010;88:58–66.

    Article  PubMed  CAS  Google Scholar 

  57. Dhanasekaran A, Kotamraju S, Kalivendi SV, Matsunaga T, Shang T, Keszler A, et al. Supplementation of endothelial cells with mitochondria-targeted antioxidants inhibit peroxide-induced mitochondrial iron uptake, oxidative damage, and apoptosis. J Biol Chem. 2004;279:37575–87.

    Article  PubMed  CAS  Google Scholar 

  58. Covey MV, Murphy MP, Hobbs CE, Smith RA, Oorschot DE. Effect of the mitochondrial antioxidant, Mito Vitamin E, on hypoxic-ischemic striatal injury in neonatal rats: a dose-response and stereological study. Exp Neurol. 2006;199:513–9.

    Article  PubMed  CAS  Google Scholar 

  59. Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, et al. Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem. 2001;276:4588–96.

    Article  PubMed  CAS  Google Scholar 

  60. • Graham D, Huynh NN, Hamilton CA, Beattie E, Smith RA, Cocheme HM, et al. Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension. 2009;54:322–8. This article emphasizes the protective role of mitochondria-targeted antioxidants.

    Article  PubMed  CAS  Google Scholar 

  61. Ross MF, Prime TA, Abakumova I, James AM, Porteous CM, Smith RA, et al. Rapid and extensive uptake and activation of hydrophobic triphenylphosphonium cations within cells. Biochem J. 2008;411:633–45.

    Article  PubMed  CAS  Google Scholar 

  62. Adlam VJ, Harrison JC, Porteous CM, James AM, Smith RA, Murphy MP, et al. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J. 2005;19:1088–95.

    Article  PubMed  CAS  Google Scholar 

  63. Szeto HH. Mitochondria-targeted cytoprotective peptides for ischemia-reperfusion injury. Antioxid Redox Signal. 2008;10:601–19.

    Article  PubMed  CAS  Google Scholar 

  64. Zhao K, Zhao GM, Wu D, Soong Y, Birk AV, Schiller PW, et al. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem. 2004;279:34682–90.

    Article  PubMed  CAS  Google Scholar 

  65. Cho J, Won K, Wu D, Soong Y, Liu S, Szeto HH, et al. Potent mitochondria-targeted peptides reduce myocardial infarction in rats. Coron Artery Dis. 2007;18:215–20.

    Article  PubMed  Google Scholar 

  66. Li J, Chen X, Xiao W, Ma W, Li T, Huang J, et al. Mitochondria-targeted antioxidant peptide SS31 attenuates high glucose-induced injury on human retinal endothelial cells. Biochem Biophys Res Commun. 2011;404:349–56.

    Article  PubMed  CAS  Google Scholar 

  67. Kloner RA, Hale SL, Gorman RC, Shuto T, Koomalsingh KJ, Gorman JH, et al. Bendavia, a novel mitochondrial-targeted cytoprotective compound reduces ischemia/reperfusion injury: experience in 3 independent laboratories. Circulation. 2011;124:A9581.

    Google Scholar 

  68. Dai S, He Y, Zhang H, Yu L, Wan T, Xu Z, et al. Endothelial-specific expression of mitochondrial thioredoxin promotes ischemia-mediated arteriogenesis and angiogenesis. Arterioscler Thromb Vasc Biol. 2009;29:495–502.

    Article  PubMed  CAS  Google Scholar 

  69. Wang Y, Zang QS, Liu Z, Wu Q, Maass D, Dulan G, et al. Regulation of VEGF-induced endothelial cell migration by mitochondrial reactive oxygen species. Am J Physiol Cell Physiol. 2011;301:C695–704.

    Article  PubMed  CAS  Google Scholar 

  70. Abid MR, Schoots IG, Spokes KC, Wu SQ, Mawhinney C, Aird WC. Vascular endothelial growth factor-mediated induction of manganese superoxide dismutase occurs through redox-dependent regulation of forkhead and IkappaB/NF-kappaB. J Biol Chem. 2004;279:44030–8.

    Article  PubMed  CAS  Google Scholar 

  71. Kobayashi S, Inoue N, Ohashi Y, Terashima M, Matsui K, Mori T, et al. Interaction of oxidative stress and inflammatory response in coronary plaque instability: important role of C-reactive protein. Arterioscler Thromb Vasc Biol. 2003;23:1398–404.

    Article  PubMed  CAS  Google Scholar 

  72. • Bae YS, Lee JH, Choi SH, Kim S, Almazan F, Witztum JL, et al. Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein: toll-like receptor 4- and spleen tyrosine kinase-dependent activation of NADPH oxidase 2. Circ Res. 2009;104:210–8. 21p. This article shows that sequential activation of toll-like receptors and NOX leads to mitochondrial ROS and inflammatory cytokine production (see also [86]).

    Article  PubMed  CAS  Google Scholar 

  73. Katsume A, Okigaki M, Matsui A, Che J, Adachi Y, Kishita E, et al. Early inflammatory reactions in atherosclerosis are induced by proline-rich tyrosine kinase/reactive oxygen species-mediated release of tumor necrosis factor-alpha and subsequent activation of the p21Cip1/Ets-1/p300 system. Arterioscler Thromb Vasc Biol. 2011;31:1084–92.

    Article  PubMed  CAS  Google Scholar 

  74. Lee YW, Lee WH, Kim PH. Role of NADPH oxidase in interleukin-4-induced monocyte chemoattractant protein-1 expression in vascular endothelium. Inflamm Res. 2010;59:755–65.

    Article  PubMed  CAS  Google Scholar 

  75. Mowbray AL, Kang DH, Rhee SG, Kang SW, Jo H. Laminar shear stress up-regulates peroxiredoxins (PRX) in endothelial cells: PRX 1 as a mechanosensitive antioxidant. J Biol Chem. 2008;283:1622–7.

    Article  PubMed  CAS  Google Scholar 

  76. Yuan W, Ge H, He B. Pro-inflammatory activities induced by CyPA-EMMPRIN interaction in monocytes. Atherosclerosis. 2010;213:415–21.

    Article  PubMed  CAS  Google Scholar 

  77. Lee CF, Qiao M, Schroder K, Zhao Q, Asmis R. Nox4 is a novel inducible source of reactive oxygen species in monocytes and macrophages and mediates oxidized low density lipoprotein-induced macrophage death. Circ Res. 2010;106:1489–97.

    Article  PubMed  CAS  Google Scholar 

  78. Liu W, Porter NA, Schneider C, Brash AR, Yin H. Formation of 4-hydroxynonenal from cardiolipin oxidation: Intramolecular peroxyl radical addition and decomposition. Free Radic Biol Med. 2011;50:166–78.

    Article  PubMed  CAS  Google Scholar 

  79. Almeida M, Ambrogini E, Han L, Manolagas SC, Jilka RL. Increased lipid oxidation causes oxidative stress, increased peroxisome proliferator-activated receptor-gamma expression, and diminished pro-osteogenic Wnt signaling in the skeleton. J Biol Chem. 2009;284:27438–48.

    Article  PubMed  CAS  Google Scholar 

  80. Srinivasan S, Yeh M, Danziger EC, Hatley ME, Riggan AE, Leitinger N, et al. Glucose regulates monocyte adhesion through endothelial production of interleukin-8. Circ Res. 2003;92:371–7.

    Article  PubMed  CAS  Google Scholar 

  81. Ermak N, Lacour B, Drueke TB, Vicca S. Role of reactive oxygen species and Bax in oxidized low density lipoprotein-induced apoptosis of human monocytes. Atherosclerosis. 2008;200:247–56.

    Article  PubMed  CAS  Google Scholar 

  82. Cybulsky MI, Jongstra-Bilen J. Resident intimal dendritic cells and the initiation of atherosclerosis. Curr Opin Lipidol. 2010;21:397–403.

    Article  PubMed  CAS  Google Scholar 

  83. Del Prete A, Zaccagnino P, Di PM, Saltarella M, Oliveros CC, Nico B, et al. Role of mitochondria and reactive oxygen species in dendritic cell differentiation and functions. Free Radic Biol Med. 2008;44:1443–51.

    Article  Google Scholar 

  84. Ronald JA, Chen JW, Chen Y, Hamilton AM, Rodriguez E, Reynolds F, et al. Enzyme-sensitive magnetic resonance imaging targeting myeloperoxidase identifies active inflammation in experimental rabbit atherosclerotic plaques. Circulation. 2009;120:592–9.

    Article  PubMed  CAS  Google Scholar 

  85. Cole JE, Georgiou E, Monaco C. The expression and functions of toll-like receptors in atherosclerosis. Mediators Inflamm. 2010;2010:393946.

    Article  PubMed  Google Scholar 

  86. • West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature. 2011;472:476–80. This article shows that sequential activation of toll-like receptors and NOX leads to mitochondrial ROS and inflammatory cytokine production (see also [72]).

    Article  PubMed  CAS  Google Scholar 

  87. Kobayashi K, Hernandez LD, Galan JE, Janeway Jr CA, Medzhitov R, Flavell RA. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell. 2002;110:191–202.

    Article  PubMed  CAS  Google Scholar 

  88. Hulsmans M, Geeraert B, De Keyzer D, Mertens A, Lannoo M, Vanaudenaerde B, et al. Interleukin-1 receptor-associated kinase-3 is a key inhibitor of inflammation in obesity and metabolic syndrome. PLoS ONE. 2012;7:e30414.

    Google Scholar 

  89. Lee SJ, Seo KW, Yun MR, Bae SS, Lee WS, Hong KW, et al. 4-Hydroxynonenal enhances MMP-2 production in vascular smooth muscle cells via mitochondrial ROS-mediated activation of the Akt/NF-kappaB signaling pathways. Free Radic Biol Med. 2008;45:1487–92.

    Article  PubMed  CAS  Google Scholar 

  90. Levonen AL, Inkala M, Heikura T, Jauhiainen S, Jyrkkanen HK, Kansanen E, et al. Nrf2 gene transfer induces antioxidant enzymes and suppresses smooth muscle cell growth in vitro and reduces oxidative stress in rabbit aorta in vivo. Arterioscler Thromb Vasc Biol. 2007;27:741–7.

    Article  PubMed  CAS  Google Scholar 

  91. Shen J, Yang M, Ju D, Jiang H, Zheng JP, Xu Z, et al. Disruption of SM22 promotes inflammation after artery injury via nuclear factor kappaB activation. Circ Res. 2010;106:1351–62.

    Article  PubMed  CAS  Google Scholar 

  92. • Zheng Z, Chen H, Wang H, Ke B, Zheng B, Li Q, et al. Improvement of retinal vascular injury in diabetic rats by statins is associated with the inhibition of mitochondrial reactive oxygen species pathway mediated by peroxisome proliferator-activated receptor gamma coactivator 1alpha. Diabetes. 2010;59:2315–25. This article demonstrates that statin-induced inhibition of mtROS pathway is mediated by PPARγ co-activator 1α.

    Article  PubMed  CAS  Google Scholar 

  93. Subramanian S, Kalyanaraman B, Migrino RQ. Mitochondrially targeted antioxidants for the treatment of cardiovascular diseases. Recent Pat Cardiovasc Drug Discov. 2010;5:54–65.

    Article  PubMed  CAS  Google Scholar 

  94. Smith RA, Murphy MP. Mitochondria-targeted antioxidants as therapies. Discov Med. 2011;11:106–14.

    PubMed  Google Scholar 

Download references

Acknowledgments

Funding was provided by the Bijzonder Onderzoeksfonds of the KU Leuven (PF/10/014) and by the Fonds voor Wetenschappelijk Onderzoek-Vlaanderen (G0846.11, and Vascular Biology Network).

Disclosure

No conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Holvoet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hulsmans, M., Van Dooren, E. & Holvoet, P. Mitochondrial Reactive Oxygen Species and Risk of Atherosclerosis. Curr Atheroscler Rep 14, 264–276 (2012). https://doi.org/10.1007/s11883-012-0237-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-012-0237-0

Keywords

Navigation