Skip to main content

High-Density Lipoprotein and Atherosclerosis: The Role of Antioxidant Activity

Abstract

Levels of high-density lipoprotein (HDL) cholesterol are generally inversely associated with the risk for the development of atherosclerosis. The mechanism by which HDL imparts protection from the initiation and progression of occlusive vascular disease is complex and multifactorial. The major anti-atherosclerotic effect of HDL is felt to be reverse cholesterol transport. HDL has been demonstrated to scavenge cholesterol from the peripheral vasculature with transport to the liver, where is it excreted in the biliary system. However, HDL exhibits multiple other physiologic effects that may play a role in the reduced risk for atherosclerosis. HDL has been demonstrated to exhibit beneficial effects on platelet function, endothelial function, coagulation parameters, inflammation, and interactions with triglyceride-rich lipoproteins. Increasing amounts of clinical and experimental data have shown that HDL cholesterol has significant antioxidant effect that may significantly contribute to protection from atherosclerosis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Barter P, et al. HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N Engl J Med. 2007;357(13):1301–10.

    PubMed  Article  CAS  Google Scholar 

  2. •• Brufau G, Groen AK, Kuipers F. Reverse cholesterol transport revisited: contribution of biliary versus intestinal cholesterol excretion. Arterioscler Thromb Vasc Biol. 2011;31(8):1726–33. This is an excellent review of alternatives mechanisms in the removal of cholesterol stores from vascular depots and subsequent excretion into the gastrointestinal tract.

    PubMed  Article  CAS  Google Scholar 

  3. Assmann G, Gotto Jr AM. HDL cholesterol and protective factors in atherosclerosis. Circulation. 2004;109(23 Suppl 1):III8–III14.

    PubMed  Google Scholar 

  4. Florentin M, et al. Multiple actions of high-density lipoprotein. Curr Opin Cardiol. 2008;23(4):370–8.

    PubMed  Article  Google Scholar 

  5. • Williams PT, Feldman DE. Prospective study of coronary heart disease vs. HDL2, HDL3, and other lipoproteins in Gofman's Livermore Cohort. Atherosclerosis. 2011;214(1):196–202. This is an epidemiologic study that provides a mechanism and rationale for the correlation of cardiovascular risk with various HDL subfractions.

    PubMed  Article  CAS  Google Scholar 

  6. Kontush A, Chapman MJ. Antiatherogenic function of HDL particle subpopulations: focus on antioxidative activities. Curr Opin Lipidol. 2010;21(4):312–8.

    PubMed  Article  CAS  Google Scholar 

  7. Tall AR. Functions of cholesterol ester transfer protein and relationship to coronary artery disease risk. J Clin Lipidol. 2010;4(5):389–93.

    PubMed  Article  Google Scholar 

  8. •• Sanz J, Fuster V. The year in atherothrombosis. J Am Coll Cardiol. 2011;58(8):779–91. This article contains comprehensive reviews of major advances over the past 12 months, including a review of multiple studies of HDL including epidemiologic correlations and studies utilizing nicotinic acid and fibric acid derivatives. Additionally, references are provided for the role of cholesterol ester transfer protein and cardiovascular outcomes. The role of HDL mimetics is also discussed.

    PubMed  Article  Google Scholar 

  9. van Hinsbergh, V. W. Endothelium-role in regulation of coagulation and inflammation. Semin Immunopathol. 2011.

  10. Turner EC, et al. Interaction of the human prostacyclin receptor with the PDZ adapter protein PDZK1: role in endothelial cell migration and angiogenesis. Mol Biol Cell. 2011;22(15):2664–79.

    PubMed  Article  CAS  Google Scholar 

  11. Appel SJ, Harrell JS, Davenport ML. Central obesity, the metabolic syndrome, and plasminogen activator inhibitor-1 in young adults. J Am Acad Nurse Pract. 2005;17(12):535–41.

    PubMed  Article  Google Scholar 

  12. Superko RH. Lipoprotein subclasses and atherosclerosis. Front Biosci. 2001;6:D355–65.

    PubMed  Article  CAS  Google Scholar 

  13. Donati MB. The "common soil hypothesis": evidence from population studies? Thromb Res. 2010;125 Suppl 2:S92–5.

    PubMed  Article  Google Scholar 

  14. Madamanchi NR, Hakim ZS, Runge MS. Oxidative stress in atherogenesis and arterial thrombosis: the disconnect between cellular studies and clinical outcomes. J Thromb Haemost. 2005;3(2):254–67.

    PubMed  Article  CAS  Google Scholar 

  15. Bonomini F, et al. Atherosclerosis and oxidative stress. Histol Histopathol. 2008;23(3):381–90.

    PubMed  CAS  Google Scholar 

  16. Nicholls SJ, et al. Reconstituted high-density lipoproteins inhibit the acute pro-oxidant and proinflammatory vascular changes induced by a periarterial collar in normocholesterolemic rabbits. Circulation. 2005;111(12):1543–50.

    PubMed  Article  CAS  Google Scholar 

  17. Steinbrecher UP, Zhang HF, Lougheed M. Role of oxidatively modified LDL in atherosclerosis. Free Radic Biol Med. 1990;9(2):155–68.

    PubMed  Article  CAS  Google Scholar 

  18. Stocker R, Keaney Jr JF. Role of oxidative modifications in atherosclerosis. Physiol Rev. 2004;84(4):1381–478.

    PubMed  Article  CAS  Google Scholar 

  19. Napoli C, de Nigris F, Palinski W. Multiple role of reactive oxygen species in the arterial wall. J Cell Biochem. 2001;82(4):674–82.

    PubMed  Article  CAS  Google Scholar 

  20. Navab M, et al. The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J Lipid Res. 2004;45(6):993–1007.

    PubMed  Article  CAS  Google Scholar 

  21. Negre-Salvayre A, et al. Antioxidant and cytoprotective properties of high-density lipoproteins in vascular cells. Free Radic Biol Med. 2006;41(7):1031–40.

    PubMed  Article  CAS  Google Scholar 

  22. Kunitake ST, et al. Binding of transition metals by apolipoprotein A-I-containing plasma lipoproteins: inhibition of oxidation of low density lipoproteins. Proc Natl Acad Sci U S A. 1992;89(15):6993–7.

    PubMed  Article  CAS  Google Scholar 

  23. Klimov AN, et al. On the ability of high density lipoproteins to remove phospholipid peroxidation products from erythrocyte membranes. Biochemistry (Mosc). 2001;66(3):300–4.

    Article  CAS  Google Scholar 

  24. Ribas V, et al. Human apolipoprotein A-II enrichment displaces paraoxonase from HDL and impairs its antioxidant properties: a new mechanism linking HDL protein composition and antiatherogenic potential. Circ Res. 2004;95(8):789–97.

    PubMed  Article  CAS  Google Scholar 

  25. Garner B, et al. Oxidation of high density lipoproteins. II. Evidence for direct reduction of lipid hydroperoxides by methionine residues of apolipoproteins AI and AII. J Biol Chem. 1998;273(11):6088–95.

    PubMed  Article  CAS  Google Scholar 

  26. Chiesa G, Sirtori CR. Apolipoprotein A-I(Milano): current perspectives. Curr Opin Lipidol. 2003;14(2):159–63.

    PubMed  Article  CAS  Google Scholar 

  27. Nissen SE, et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA. 2003;290(17):2292–300.

    PubMed  Article  CAS  Google Scholar 

  28. •• Degoma EM, Rader DJ. Novel HDL-directed pharmacotherapeutic strategies. Nat Rev Cardiol. 2011;8(5):266–77. This is an excellent and comprehensive review of the role of HDL-directed therapies in the prevention of cardiovascular disease. Multiple approaches such as direct or indirect mechanisms to augment Apo A1 levels, utilization of nicotinic acid receptor agonists, endothelial lipase inhibitors, and mimicking of Apo A1 functionality are reviewed in detail. Mechanisms to enhance reverse cholesterol transport are also presented.

    PubMed  Article  CAS  Google Scholar 

  29. Mackness MI, et al. Serum paraoxonase activity in familial hypercholesterolaemia and insulin-dependent diabetes mellitus. Atherosclerosis. 1991;86(2–3):193–9.

    PubMed  Article  CAS  Google Scholar 

  30. Mackness B, et al. Serum paraoxonase activity in patients with type 1 diabetes compared to healthy controls. Eur J Clin Invest. 2002;32(4):259–64.

    PubMed  Article  CAS  Google Scholar 

  31. Precourt LP, et al. The three-gene paraoxonase family: physiologic roles, actions and regulation. Atherosclerosis. 2011;214(1):20–36.

    PubMed  Article  CAS  Google Scholar 

  32. Navab M, et al. HDL and the inflammatory response induced by LDL-derived oxidized phospholipids. Arterioscler Thromb Vasc Biol. 2001;21(4):481–8.

    PubMed  Article  CAS  Google Scholar 

  33. Yost CC, Weyrich AS, Zimmerman GA. The platelet activating factor (PAF) signaling cascade in systemic inflammatory responses. Biochimie. 2010;92(6):692–7.

    PubMed  Article  CAS  Google Scholar 

  34. Penna C, Bassino E, Alloatti G. Platelet activating factor: the good and the bad in the ischemic/reperfused heart. Exp Biol Med (Maywood). 2011;236(4):390–401.

    Article  CAS  Google Scholar 

  35. Tselepis AD, John M. Chapman, Inflammation, bioactive lipids and atherosclerosis: potential roles of a lipoprotein-associated phospholipase A2, platelet activating factor-acetylhydrolase. Atheroscler Suppl. 2002;3(4):57–68.

    PubMed  Article  CAS  Google Scholar 

  36. Costa LG, et al. Modulation of paraoxonase (PON1) activity. Biochem Pharmacol. 2005;69(4):541–50.

    PubMed  Article  CAS  Google Scholar 

  37. Salvayre R, et al. Oxidized low-density lipoprotein-induced apoptosis. Biochim Biophys Acta. 2002;1585(2–3):213–21.

    PubMed  CAS  Google Scholar 

Download references

Disclosure

No conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Farmer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bandeali, S., Farmer, J. High-Density Lipoprotein and Atherosclerosis: The Role of Antioxidant Activity. Curr Atheroscler Rep 14, 101–107 (2012). https://doi.org/10.1007/s11883-012-0235-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-012-0235-2

Keywords

  • High density lipoprotein
  • Atherosclerosis
  • Reverse cholesterol transport
  • Antioxidant
  • Endothelial function