Skip to main content

Advertisement

Log in

The role of CT angiography in risk stratification for atherosclerosis

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Multislice CT coronary angiography (CTA) offers the opportunity to visualize the coronary arteries in a complete fashion, including the arterial wall, vessel dimensions and tortuosity, and calcified and noncalcified plaques. The ability of CTA to reliably rule out high-grade stenoses in patients with an intermediate likelihood of coronary artery disease has been well established. Recently, CTA applications have been extended to interrogate coronary plaques in more detail. In patients with acute coronary syndrome, culprit plaques were observed to have a larger volume, less solid but spottier calcification, and an increased tendency for expansive (positive) remodeling. A number of prospective studies have suggested that the quantification of overall coronary atherosclerosis adds incremental prognostic power in addition to conventional risk factor analysis. With novel scanning algorithms promising a substantial radiation dose reduction, risk stratification for coronary atherosclerosis by using CTA may become an option in selected patients. It is still undetermined if this method offers a prognostic benefit over conventional methods and how it compares to calcium scoring. The currently available data are encouraging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Kuller LH: Discussion: Why measure atherosclerosis? AHA Symposium/Epidemiology Meeting: Atherosclerosis. Circulation 1993, 87(Suppl II):II-34–II-37.

    CAS  Google Scholar 

  2. Devereux R, Alderman M: Role of preclinical cardiovascular disease in the evolution from risk factor exposure to development of morbid events. Circulation 1993, 88:1444–1455.

    PubMed  CAS  Google Scholar 

  3. Proudfit WL, Bruschke VG, Sones FM Jr: Clinical course of patients with normal or slightly or moderately abnormal coronary arteriograms: 10-year follow-up of 521 patients. Circulation 1980, 62:712–717.

    PubMed  CAS  Google Scholar 

  4. Emond M, Mock MB, Davis KB, et al.: Long-term survival of medically treated patients in the Coronary Artery Surgery Study (CASS) Registry. Circulation 1994, 90:2645–2657.

    PubMed  CAS  Google Scholar 

  5. Schenker MP, Dorbala S, Hong EC, et al.: Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate likelihood of coronary artery disease: a combined positron emission tomography/computed tomography study. Circulation 2008, 117:1693–1700.

    Article  PubMed  Google Scholar 

  6. Schmermund A, Erbel R: Current Perspective: Unstable coronary plaque and its relation to coronary calcium. Circulation 2001, 104:1682–1687.

    Article  PubMed  CAS  Google Scholar 

  7. Juonala M, Järvisalo MJ, Mäki-Torkko N, et al.: Risk factors identified in childhood and decreased carotid artery elasticity in adulthood: the Cardiovascular Risk in Young Finns Study. Circulation 2005, 112:1486–1493.

    Article  PubMed  Google Scholar 

  8. Raitakari OT, Juonala M, Kähönen M, et al.: Cardiovascular risk factors in childhood and carotid artery intima-media thickness in adulthood: the Cardiovascular Risk in Young Finns Study. JAMA 2003, 290:2277–2283.

    Article  PubMed  CAS  Google Scholar 

  9. Loria CM, Liu K, Lewis CE, et al.: Early adult risk factor levels and subsequent coronary artery calcification: the CARDIA Study. J Am Coll Cardiol 2007, 49:2013–2020.

    Article  PubMed  Google Scholar 

  10. Falk E: Unstable angina with fatal outcome: dynamic coronary thrombosis leading to infarction and/or sudden death. Autopsy evidence of recurrent mural thrombosis with peripheral embolozation culminating in total vascular occlusion. Circulation 1985, 71:699–708.

    PubMed  CAS  Google Scholar 

  11. Fuster V: Mechanisms leading to myocardial infarction: insights from studies of vascular biology. Circulation 1994, 90:2126–2146.

    PubMed  CAS  Google Scholar 

  12. Stary HC, Chandler AB, Glagov S, et al.: A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1994, 89:2462–2478.

    PubMed  CAS  Google Scholar 

  13. Stary HC, Chandler AB, Dinsmore RE, et al.: A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1995, 92:1355–1374.

    PubMed  CAS  Google Scholar 

  14. Virmani R, Kolodgie FD, Burke AP, et al.: Lessons from sudden coronary death. A comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000, 20:1262–1275.

    PubMed  CAS  Google Scholar 

  15. Erbel R, Möhlenkamp S, Kerkhoff G, et al.: Non-invasive screening for coronary artery disease: calcium scoring. Heart 2007, 93:1620–1629.

    Article  PubMed  CAS  Google Scholar 

  16. Greenland P, Bonow RO, Brundage BH, et al.: American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography), Society of Atherosclerosis Imaging and Prevention, Society of Cardiovascular Computed Tomography. ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography). Circulation 2007, 115:402–426.

    Article  PubMed  Google Scholar 

  17. Detrano R, Guerci AD, Carr JJ, et al.: Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med 2008, 358:1336–1345.

    Article  PubMed  CAS  Google Scholar 

  18. Bluemke DA, Achenbach S, Budoff M, et al.: Noninvasive coronary artery imaging: magnetic resonance angiography and multidetector computed tomography angiography: a scientific statement from the American Heart Association committee on cardiovascular imaging and intervention of the council on cardiovascular radiology and intervention, and the councils on clinical cardiology and cardiovascular disease in the young. Circulation 2008, 118:586–606.

    Article  PubMed  Google Scholar 

  19. Achenbach S, Moselewski F, Ropers D, et al.: Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation 2004, 109:14–17.

    Article  PubMed  Google Scholar 

  20. Leber AW, Becker A, Knez A, et al.: Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound. J Am Coll Cardiol 2006, 47:672–677.

    Article  PubMed  Google Scholar 

  21. Scholte AJ, Schuijf JD, Kharagjitsingh AV, et al.: Prevalence of coronary artery disease and plaque morphology assessed by multi-slice computed tomography coronary angiography and calcium scoring in asymptomatic patients with type 2 diabetes. Heart 2008, 94:290–295.

    Article  PubMed  CAS  Google Scholar 

  22. Hausleiter J, Meyer T, Hadamitzky M, et al.: Prevalence of noncalcified coronary plaques by 64-slice computed tomography in patients with an intermediate risk for significant coronary artery disease. J Am Coll Cardiol 2006, 48:312–318.

    Article  PubMed  Google Scholar 

  23. Henneman MM, Schuijf JD, van Werkhoven JM, et al.: Multi-slice computed tomography coronary angiography for ruling out suspected coronary artery disease: what is the prevalence of a normal study in a general clinical population? Eur Heart J 2008, 29:2006–2013.

    Article  PubMed  Google Scholar 

  24. Choi EK, Choi SI, Rivera JJ, et al.: Coronary computed tomography angiography as a screening tool for the detection of occult coronary artery disease in asymptomatic individuals. J Am Coll Cardiol 2008, 52:357–365.

    Article  PubMed  Google Scholar 

  25. Goldstein JA, Gallagher MJ, O’Neill WW, et al.: A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain. J Am Coll Cardiol 2007, 49:863–871.

    Article  PubMed  Google Scholar 

  26. Hoffmann U, Nagurney JT, Moselewski F, et al.: Coronary multidetector computed tomography in the assessment of patients with acute chest pain. Circulation 2006, 114:2251–2260.

    Article  PubMed  Google Scholar 

  27. Rubinshtein R, Halon DA, Gaspar T, et al.: Usefulness of 64-slice cardiac computed tomographic angiography for diagnosing acute coronary syndromes and predicting clinical outcome in emergency department patients with chest pain of uncertain origin. Circulation 2007, 115:1762–1768.

    Article  PubMed  Google Scholar 

  28. Schroeder S, Kopp AF, Baumbach A, et al.: Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol 2001, 37:1430–1435.

    Article  PubMed  CAS  Google Scholar 

  29. Hoffmann U, Moselewski F, Nieman K, et al.: Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography. J Am Coll Cardiol 2006, 47:1655–1662.

    Article  PubMed  Google Scholar 

  30. Motoyama S, Kondo T, Sarai M, et al.: Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 2007, 50:319–326.

    Article  PubMed  Google Scholar 

  31. Henneman MM, Schuijf JD, Pundziute G, et al.: Noninvasive evaluation with multislice computed tomography in suspected acute coronary syndrome: plaque morphology on multislice computed tomography versus coronary calcium score. J Am Coll Cardiol 2008, 52:216–222.

    Article  PubMed  Google Scholar 

  32. Pundziute G, Schuijf JD, Jukema JW, et al.: Evaluation of plaque characteristics in acute coronary syndromes: noninvasive assessment with multi-slice computed tomography and invasive evaluation with intravascular ultrasound radiofrequency data analysis. Eur Heart J 2008 (in press).

  33. Ostrom PO, Gopal A, Ahmadi N, et al.: Mortality incidence and the severity of coronary atherosclerosis assessed by computed tomography angiography. J Am Coll Cardiol 2008, 52:1335–1343.

    Article  PubMed  Google Scholar 

  34. Pundziute G, Schuijf JD, Jukema JW, et al.: Prognostic value of multislice computed tomography coronary angiography in patients with known or suspected coronary artery disease. J Am Coll Cardiol 2007, 49, 62–70.

    Article  PubMed  Google Scholar 

  35. Min JK, Shaw LJ, Devereux RB, et al.: Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality. J Am Coll Cardiol 2007, 50:1161–1770.

    Article  PubMed  Google Scholar 

  36. Gilard M, Le Gal G, Cornily JC, et al.: Midterm prognosis of patients with suspected coronary artery disease and normal multislice computed tomographic findings. A prospective management outcome study. Arch Intern Med 2007, 167:1686–1689.

    Article  PubMed  Google Scholar 

  37. Waters D, Craven TE, Lespérance J: Prognostic significance of progression of coronary atherosclerosis. Circulation 1993, 87:1067–1075.

    PubMed  CAS  Google Scholar 

  38. Kaski JC, Chester MR, Chen L, et al.: Rapid angiographic progression of coronary artery disease in patients with angina pectoris. The role of complex stenosis morphology. Circulation 1995, 92:2058–2065.

    PubMed  CAS  Google Scholar 

  39. Burke AP, Kolodgie FD, Farb A, et al.: Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation 2001, 103:934–940.

    PubMed  CAS  Google Scholar 

  40. Schmid M, Achenbach S, Ropers D, et al.: Assessment of changes in non-calcified atherosclerotic plaque volume in the left main and left anterior descending coronary arteries over time by 64-slice computed tomography. Am J Cardiol 2008, 101:579–584.

    Article  PubMed  Google Scholar 

  41. Barreto M, Schoenhagen P, Nair A, et al.: Potential of dual-energy computed tomography to characterize atherosclerotic plaque: ex vivo assessment of human coronary arteries in comparison to histology. J Cardiovasc Comput Tomogr 2008, 2:234–242.

    Article  PubMed  Google Scholar 

  42. Aziz K, Berger K, Claycombe K, et al.: Noninvasive detection and localization of vulnerable plaque and arterial thrombosis with computed tomography angiography/positron emission tomography. Circulation 2008, 117:2061–2070.

    Article  PubMed  Google Scholar 

  43. Herzog BA, Husmann L, Burkhard N, et al.: Accuracy of low dose CT coronary angiography using prospective ECG-triggering: First clinical experience. Eur Heart J 2008 (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Schmermund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmermund, A., Magedanz, A. & Voigtländer, T. The role of CT angiography in risk stratification for atherosclerosis. Curr Atheroscler Rep 11, 111–117 (2009). https://doi.org/10.1007/s11883-009-0018-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-009-0018-6

Keywords

Navigation