Skip to main content
Log in

Common and rare alleles as causes of complex phenotypes

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

A full understanding of the molecular basis for genetically determined human traits, including susceptibility to disease, appears to be within reach following recent breakthroughs. How fully this promise will be realized, and by which combination of study designs, will depend to a large extent on the allelic architecture of each trait, which is still unknown in most cases. The prevailing belief that traits common in the general population must depend on common variants is challenged by theoretical predictions based on the mutation-selection model. This model states that if disease variants are subject to even weak purifying selection, their presence can be maintained only by new mutations, resulting in a multitude of rare alleles at each locus. Predictions favoring each scenario have relied on biased evidence and unverifiable assumptions, respectively. However, unbiased factual testing of them may soon be possible, as data accumulate from genome-wide association studies and high-throughput resequencing. Because the models are not mutually exclusive, the question should be not which model is correct, but rather what is the relative contribution of each, which is something that may vary dramatically among traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. On-line Mendelian Inheritance in Man, statistics page. Available at http://www.ncbi.nlm.nih.gov/Omim/mimstats.html. Accessed December 15, 2007.

  2. Cooke GS, Hill AV: Genetics of susceptibility to human infectious disease. Nat Rev Genet 2001, 2:967–977.

    Article  PubMed  CAS  Google Scholar 

  3. Stunkard AJ, Harris JR, Pedersen NL, McClearn GE: The body-mass index of twins who have been reared apart. N Engl J Med 1990, 322:1483–1487.

    PubMed  CAS  Google Scholar 

  4. Henkin L, Bergman RN, Bowden DW, et al.: Genetic epidemiology of insulin resistance and visceral adiposity. The IRAS Family Study design and methods. Ann Epidemiol 2003, 13:211–217.

    Article  PubMed  Google Scholar 

  5. Permutt MA, Wasson J, Cox N: Genetic epidemiology of diabetes. J Clin Invest 2005, 115:1431–1439.

    Article  PubMed  CAS  Google Scholar 

  6. O’Connell DL, Heller RF, Roberts DC, et al.: Twin study of genetic and environmental effects on lipid levels. Genet Epidemiol 1988, 5:323–341.

    Article  PubMed  CAS  Google Scholar 

  7. Concannon P, Erlich HA, Julier C, et al.; Type 1 Diabetes Genetics Consortium: Type 1 diabetes: evidence for susceptibility loci from four genome-wide linkage scans in 1,435 multiplex families. Diabetes 2005, 54:2995–3001.

    Article  PubMed  CAS  Google Scholar 

  8. Barratt BJ, Payne F, Lowe CE, et al.: Remapping the insulin gene/IDDM2 locus in type 1 diabetes. Diabetes 2004, 53:1884–1889.

    Article  PubMed  CAS  Google Scholar 

  9. Nakhla M, Polychronakos C: Monogenic and other unusual causes of diabetes mellitus. Pediatr Clin North Am 2005, 52:1637–1650.

    Article  PubMed  Google Scholar 

  10. Triggs-Raine BL, Kirkpatrick RD, Kelly SL, et al.: HNF-1alpha G319S, a transactivation-deficient mutant, is associated with altered dynamics of diabetes on set in an Oji-Cree community. Proc Natl Acad Sci U S A 2002, 99:4614–4619.

    Article  PubMed  CAS  Google Scholar 

  11. Redon R, Ishikawa S, Fitch KR, et al.: Global variation in copy number in the human genome. Nature 2006, 444:444–454.

    Article  PubMed  CAS  Google Scholar 

  12. International HapMap Consortium, Frazer KA, Ballinger DG, Cox DR, et al.: A second generation human haplotype map of over 3.1 million SNPs. Nature 2007, 449:851–861.

    Article  PubMed  CAS  Google Scholar 

  13. Fan JB, Chee MS, Gunderson KL: Highly parallel genomic assays. Nat Rev Genet 2006, 7:632–644.

    Article  PubMed  CAS  Google Scholar 

  14. Pritchard JK: Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet 2001, 69:124–137.

    Article  PubMed  CAS  Google Scholar 

  15. Ahituv N, Kavaslar N, Schackwitz W, et al.: Medical sequencing at the extremes of human body mass. Am J Hum Genet 2007, 80:779–791.

    Article  PubMed  CAS  Google Scholar 

  16. Kryukov GV, Pennacchio LA, Sunyaev SR: Most rare missense alleles are deleterious in humans: implications for complex disease and association studies. Am J Hum Genet 2007, 80:727–739.

    Article  PubMed  CAS  Google Scholar 

  17. Neel JV: Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet 1962, 14:353–362.

    PubMed  CAS  Google Scholar 

  18. Vang T, Congia M, Macis MD, et al.: Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat Genet 2005, 37:1317–1319.

    Article  PubMed  CAS  Google Scholar 

  19. Voight BF, Kudaravalli S, Wen X, Pritchard JK: A map of recent positive selection in the human genome. PLoS Biol 2006, 4:e72.

    Article  PubMed  Google Scholar 

  20. Levy S, Sutton G, Ng PC, et al.: The diploid genome sequence of an individual human. PLoS Biol 2007 5:e254.

    Article  PubMed  Google Scholar 

  21. Cohen JC, Kiss RS, Pertsemlidis A, et al.: Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 2004, 305:869–872.

    Article  PubMed  CAS  Google Scholar 

  22. Brooks-Wilson A, Marcil M, Clee SM, et al.: Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet 1999, 22:336–345.

    Article  PubMed  CAS  Google Scholar 

  23. PolyPhen: prediction of functional effect of human nsSNPs. Available at http://genetics.bwh.harvard.edu/pph. Accessed December 18, 2007.

  24. Vaisse C, Clement K, Guy-Grand B, Froguel P: A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet 1998, 20:113–114.

    Article  PubMed  CAS  Google Scholar 

  25. Dubern B, Clément K, Pelloux V, et al.: Mutational analysis of melanocortin-4 receptor, agouti-related protein, and alpha-melanocyte-stimulating hormone genes in severely obese children. J Pediatr 2001, 139:204–209.

    Article  PubMed  CAS  Google Scholar 

  26. Miesenbock G, Holzl B, Foger B, et al.: Heterozygous lipoprotein lipase deficiency due to a missense mutation as the cause of impaired triglyceride tolerance with multiple lipoprotein abnormalities. J Clin Invest 1993, 91:448–455.

    Article  PubMed  CAS  Google Scholar 

  27. Wang J, Cao H, Ban MR, et al.: Resequencing genomic DNA of patients with severe hypertriglyceridemia (MIM 144650). Arterioscler Thromb Vasc Biol 2007, 27:2450–2455.

    Article  PubMed  CAS  Google Scholar 

  28. Ropers HH: New perspectives for the elucidation of genetic disorders. Am J Hum Genet 2007, 81:199–207.

    Article  PubMed  CAS  Google Scholar 

  29. Weng L, Kavaslar N, Ustaszewska A, et al.: Lack of MEF2A mutations in coronary artery disease. J Clin Invest 2005, 115:1016–1020.

    PubMed  CAS  Google Scholar 

  30. Sladek R, Rocheleau G, Rung J, et al.: A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007, 445:881–885.

    Article  PubMed  CAS  Google Scholar 

  31. Zeggini E, Weedon MN, Lindgren CM, et al.; Wellcome Trust Case Control Consortium (WTCCC): Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 2007, 316:1336–1341.

    Article  PubMed  CAS  Google Scholar 

  32. Saxena R, Voight BF, Lyssenko V, et al.; Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research: Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007, 316:1331–1336.

    Article  PubMed  CAS  Google Scholar 

  33. Scott LJ, Mohlke KL, Bonnycastle LL, et al.: A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 2007, 316:1341–1345

    Article  PubMed  CAS  Google Scholar 

  34. Steinthorsdottir V, Thorleifsson G, Reynisdottir I, et al.: A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet 2007, 39:770–775.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantin Polychronakos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polychronakos, C. Common and rare alleles as causes of complex phenotypes. Curr Atheroscler Rep 10, 194–200 (2008). https://doi.org/10.1007/s11883-008-0031-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-008-0031-1

Keywords

Navigation