Skip to main content
Log in

Oxidative stress and atherosclerosis

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Understanding of the pathophysiology of atherosclerosis can provide new strategies for the prevention and treatment of patients with this common disease. Clinical, epidemiologic, and basic molecular science studies have identified oxidative stress as a factor contributing to the development and progression of atherosclerosis. Oxidative stress also participates in the pathogenesis of endothelial dysfunction and hypertension, two important factors in many patients with atherosclerosis. Further, it contributes to mechanisms of disease progression such as lipid oxidation and vascular remodeling. This article reviews the role of reactive oxygen species and oxidative stress in atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Lefkowitz RJ, Willerson JT: Prospects for cardiovascular research. JAMA 2001, 285:581–587.

    Article  PubMed  CAS  Google Scholar 

  2. Libby P, Schwartz D, Brogi E, et al.: A cascade model for restenosis A special case of atherosclerosis progression. Circulation 1992, 86:III47-III52.

    PubMed  CAS  Google Scholar 

  3. Libby P: Inflammation in atherosclerosis. Nature 2002, 420:868–874.

    Article  PubMed  CAS  Google Scholar 

  4. Ross R: Atherosclerosis—an inflammatory disease. N Engl J Med 1999, 340:115–126.

    Article  PubMed  CAS  Google Scholar 

  5. Stocker R, Keaney JF Jr: Role of oxidative modifications in atherosclerosis. Physiol Rev 2004, 84:1381–1478.

    Article  PubMed  CAS  Google Scholar 

  6. Siess H: Oxidative Stress: Oxidants and Antioxidants. London: Academic Press; 1991.

    Google Scholar 

  7. Wendel A: Measurement of in vivo lipid peroxidation and toxicological significance. Free Radical Biol Med 1987, 3:355–358.

    CAS  Google Scholar 

  8. Halliwell B, Gutteridge J: Free Radicals in Biology and Medicine. New York: Oxford University Press; 1999.

    Google Scholar 

  9. Meyer B: Nitric Oxide. Berlin: Springer; 2000.

    Google Scholar 

  10. Griendling KK: Novel NAD(P)H oxidases in the cardiovascular system. Heart 2004, 90:491–493.

    Article  PubMed  CAS  Google Scholar 

  11. Lassegue B, Sorescu D, Szocs K, et al.: Novel gp91(phox) homologues in vascular smooth muscle cells: nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ Res 2001, 88:888–894.

    PubMed  CAS  Google Scholar 

  12. Patterson C, Ruef J, Madamanchi NR, et al.: Stimulation of a vascular smooth muscle cell NAD(P)H oxidase by thrombin. Evidence that p47(phox) may participate in forming this oxidase in vitro and in vivo. J Biol Chem 1999, 274:19814–19822.

    Article  PubMed  CAS  Google Scholar 

  13. Marumo T, Schini-Kerth VB, Fisslthaler B, Busse R: Platelet-derived growth factor-stimulated superoxide anion production modulates activation of transcription factor NF-kappaB and expression of monocyte chemoattractant protein 1 in human aortic smooth muscle cells. Circulation 1997, 96:2361–2367.

    PubMed  CAS  Google Scholar 

  14. De Keulenaer GW, Alexander RW, Ushio-Fukai M, et al.: Tumour necrosis factor alpha activates a p22phox-based NADH oxidase in vascular smooth muscle. Biochem J 1998, 329(Pt 3): 653–657.

    PubMed  Google Scholar 

  15. De Keulenaer GW, Chappell DC, Ishizaka N, et al.: Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide-producing NADH oxidase. Circ Res 1998, 82:1094–1101.

    PubMed  Google Scholar 

  16. Szocs K, Lassegue B, Sorescu D, et al.: Upregulation of Nox-based NAD(P)H oxidases in restenosis after carotid injury. Arterioscler Thromb Vasc Biol 2002, 22:21–27.

    Article  PubMed  CAS  Google Scholar 

  17. Barry-Lane PA, Patterson C, van der Merwe M, et al.: p47phox is required for atherosclerotic lesion progression in ApoE(-/-)mice. J Clin Invest 2001, 108:1513–1522.

    Article  PubMed  CAS  Google Scholar 

  18. Nishikawa T, Edelstein D, Du XL, et al.: Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000, 404:787–790.

    Article  PubMed  CAS  Google Scholar 

  19. Droge W: Free radicals in the physiological control of cell function. Physiol Rev 2002, 82:47–95.

    PubMed  CAS  Google Scholar 

  20. Harrison D, Griendling KK, Landmesser U, et al.: Role of oxidative stress in atherosclerosis. Am J Cardiol 2003, 91:7A-11A.

    Article  PubMed  CAS  Google Scholar 

  21. Ohara Y, Peterson TE, Harrison DG: Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 1993, 91:2546–2551.

    PubMed  CAS  Google Scholar 

  22. Cardillo C, Kilcoyne CM, Cannon RO 3rd, et al.: Xanthine oxidase inhibition with oxypurinol improves endothelial vasodilator function in hypercholesterolemic but not in hypertensive patients. Hypertension 1997, 30:57–63.

    PubMed  CAS  Google Scholar 

  23. Spiekermann S, Landmesser U, Dikalov S, et al.: Electron spin resonance characterization of vascular xanthine and NAD(P)H oxidase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation. Circulation 2003, 107:1383–1389.

    Article  PubMed  CAS  Google Scholar 

  24. Landmesser U, Dikalov S, Price SR, et al.: Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 2003, 111:1201–1209.

    Article  PubMed  CAS  Google Scholar 

  25. Fujii J, Ikeda Y: Advances in our understanding of peroxiredoxin, a multifunctional, mammalian redox protein. Redox Rep 2002, 7:123–130.

    Article  PubMed  CAS  Google Scholar 

  26. Holmgren A: Thioredoxin. Annu Rev Biochem 1985, 54:237–271.

    Article  PubMed  CAS  Google Scholar 

  27. Nishiyama A, Masutani H, Nakamura H, et al.: Redox regulation by thioredoxin and thioredoxin-binding proteins. IUBMB Life 2001, 52:29–33.

    Article  PubMed  CAS  Google Scholar 

  28. Schulze PC, Yoshioka J, Takahashi T, et al.: Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein. J Biol Chem 2004, 279:30369–30374.

    Article  PubMed  CAS  Google Scholar 

  29. Tanaka T, Hosoi F, Yamaguchi-Iwai Y, et al.: Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis. EMBO J 2002, 21:1695–1703.

    Article  PubMed  CAS  Google Scholar 

  30. Leopold JA, Zhang YY, Scribner AW, et al.: Glucose-6-phosphate dehydrogenase overexpression decreases endothelial cell oxidant stress and increases bioavailable nitric oxide. Arterioscler Thromb Vasc Biol 2003, 23:411–417.

    Article  PubMed  CAS  Google Scholar 

  31. Sundaresan M, Yu ZX, Ferrans VJ, et al.: Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 1995, 270:296–299.

    Article  PubMed  CAS  Google Scholar 

  32. Schulze PC, De Keulenaer GW, Yoshioka J, et al.: Vitamin D3-upregulated protein-1 (VDUP-1) regulates redox-dependent vascular smooth muscle cell proliferation through interaction with thioredoxin. Circ Res 2002, 91:689–695.

    Article  PubMed  CAS  Google Scholar 

  33. Pimentel DR, Amin JK, Xiao L, et al.: Reactive oxygen species mediate amplitude-dependent hypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes. Circ Res 2001, 89:453–460.

    PubMed  CAS  Google Scholar 

  34. Shih NL, Cheng TH, Loh SH, et al.: Reactive oxygen species modulate angiotensin II-induced beta-myosin heavy chain gene expression via Ras/Raf/extracellular signal-regulated kinase pathway in neonatal rat cardiomyocytes. Biochem Biophys Res Commun 2001, 283:143–148.

    Article  PubMed  CAS  Google Scholar 

  35. Xie Z, Kometiani P, Liu J, et al.: Intracellular reactive oxygen species mediate the linkage of Na+/K+-ATPase to hypertrophy and its marker genes in cardiac myocytes. J Biol Chem 1999, 274:19323–19328.

    Article  PubMed  CAS  Google Scholar 

  36. Rosen P, Nawroth PP, King G, et al.: The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab Res Rev 2001, 17:189–212.

    Article  PubMed  CAS  Google Scholar 

  37. Goldstein JL, Ho YK, Basu SK, Brown MS: Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A 1979, 76:333–337.

    Article  PubMed  CAS  Google Scholar 

  38. Zhao SP, Xu DY: Oxidized lipoprotein(a) increases the expression of platelet-derived growth factor-B in human umbilical vein endothelial cells. Clin Chim Acta 2000, 296:121–133.

    Article  PubMed  CAS  Google Scholar 

  39. Auge N, Garcia V, Maupas-Schwalm F, et al.: Oxidized LDL-induced smooth muscle cell proliferation involves the EGF receptor/PI-3 kinase/Akt and the sphingolipid signaling pathways. Arterioscler Thromb Vasc Biol 2002, 22:1990–1995.

    Article  PubMed  CAS  Google Scholar 

  40. Takaku M, Wada Y, Jinnouchi K, et al.: An in vitro coculture model of transmigrant monocytes and foam cell formation. Arterioscler Thromb Vasc Biol 1999, 19:2330–2339.

    PubMed  CAS  Google Scholar 

  41. Zettler ME, Prociuk MA, Austria JA, et al.: OxLDL stimulates cell proliferation through a general induction of cell cycle proteins. Am J Physiol Heart Circ Physiol 2003, 284:H644-H653.

    PubMed  CAS  Google Scholar 

  42. Heitzer T, Krohn K, Albers S, Meinertz T: Tetrahydrobiopterin improves endothelium-dependent vasodilation by increasing nitric oxide activity in patients with Type II diabetes mellitus. Diabetologia 2000, 43:1435–1438.

    Article  PubMed  CAS  Google Scholar 

  43. Grote K, Flach I, Luchtefeld M, et al.: Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species. Circ Res 2003, 92:e80-e86.

    Article  PubMed  CAS  Google Scholar 

  44. Landmesser U, Cai H, Dikalov S, et al.: Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension 2002, 40:511–515.

    Article  PubMed  CAS  Google Scholar 

  45. Rey FE, Cifuentes ME, Kiarash A, et al.: Novel competitive inhibitor of NAD(P)H oxidase assembly attenuates vascular O(2)(-) and systolic blood pressure in mice. Circ Res 2001, 89:408–414.

    PubMed  CAS  Google Scholar 

  46. Gregg D, Rauscher FM, Goldschmidt-Clermont PJ: Rac regulates cardiovascular superoxide through diverse molecular interactions: more than a binary GTP switch. Am J Physiol Cell Physiol 2003, 285:C723-C734.

    PubMed  CAS  Google Scholar 

  47. Hink U, Li H, Mollnau H, et al.: Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 2001, 88:E14-E22.

    PubMed  CAS  Google Scholar 

  48. Mertens A, Verhamme P, Bielicki JK, et al.: Increased low-density lipoprotein oxidation and impaired high-density lipoprotein antioxidant defense are associated with increased macrophage homing and atherosclerosis in dyslipidemic obese mice: LCAT gene transfer decreases atherosclerosis. Circulation 2003, 107:1640–1646.

    Article  PubMed  CAS  Google Scholar 

  49. Brownlee M: Biochemistry and molecular cell biology of diabetic complications. Nature 2001, 414:813–820.

    Article  PubMed  CAS  Google Scholar 

  50. Jacobson GM, Dourron HM, Liu J, et al.: Novel NAD(P)H oxidase inhibitor suppresses angioplasty-induced superoxide and neointimal hyperplasia of rat carotid artery. Circ Res 2003, 92:637–643.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulze, P.C., Lee, R.T. Oxidative stress and atherosclerosis. Curr Atheroscler Rep 7, 242–248 (2005). https://doi.org/10.1007/s11883-005-0013-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-005-0013-5

Keywords

Navigation