Skip to main content

Advertisement

Log in

Lipoprotein(a) and the atherothrombotic process: Mechanistic insights and clinical implications

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Although many epidemiologic studies have pointed at an association between plasma levels of lipoprotein(a) (Lp(a)) and cardiovascular risk, the data obtained have been conflicting because of a number of factors, particularly those dealing with plasma storage, lack of assay standardization, population sample size, age, gender, ethnic variations, and variable disease endpoints. Moreover, the attention has been primarily focused on whole Lp(a), with relatively less emphasis on its constituent apolipoprotein(a) and on the apolipoprotein B100-containing lipoprotein, mainly low-density lipoprotein (LDL), to which apolipoprotein(a) is linked. According to recent studies, small-size apolipoprotein(a) isoforms may represent a cardiovascular risk factor either by themselves or synergistically with plasma Lp(a) concentration. Moreover, the density properties of the LDL moiety may have an impact on Lp(a) pathogenicity. It has also become apparent that Lp(a) can be modified by oxidative events and by the action of lipolytic and proteolytic enzymes with the generation of products that exhibit atherothrombogenic potential. The role of the O-glycans linked to the inter-kringle linkers of apolipoprotein(a) is also emerging. This information is raising the awareness of the pleiotropic functions of Lp(a) and is opening new vistas on pathogenetic mechanisms whose knowledge is essential for developing rational therapies against this complex cardiovascular pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Scanu AM, Nakajima K, Edelstein C: Apolipoprotein(a): structure and biology. Frontiers Biosci 2001, 6: 546–554.

    Article  Google Scholar 

  2. Hobbs HH, White AL: Lipoprotein(a): intrigues and insights. Curr Opin Lipidol 1999, 10: 225–236.

    Article  PubMed  CAS  Google Scholar 

  3. Marcovina SM, Albers JJ, Wijsman E, et al.: Differences in Lp[a] concentrations and apo[a] polymorphs between black and white Americans. J Lipid Res 1996, 37: 2569–2585.

    PubMed  CAS  Google Scholar 

  4. Hoogeveen RC, Gambhir JK, Gambhir DS, et al.: Evaluation of Lp(a) and other independent risk factors for CHD in Asian Indians and their USA counterparts. J Lipid Res 2001, 42: 631–638.

    PubMed  CAS  Google Scholar 

  5. Hopkins PN, Wu LL, Hunt SC, et al.: Lipoprotein(a) interactions with lipid and nonlipid risk factors in early familial coronary artery disease. Arterioscler Thromb Vasc Biol 1997, 17: 2783–2792.

    PubMed  CAS  Google Scholar 

  6. Ridker PM, Stampfer MJ, Rifai N: Novel risk factors for systemic atherosclerosis. A comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein(a), and standard cholesterol screening as predictors of peripheral arterial disease. JAMA 2001, 285: 2481–2485.

    Article  PubMed  CAS  Google Scholar 

  7. Von Eckardstein A, Assmann G: Clinical implications of elevated lipoprotein (a). Curr Atheroscler Rep 2001, 3: 267–270.

    Article  Google Scholar 

  8. Baggio G, Donazzan S, Monti D, et al.: Lipoprotein(a) and lipoprotein profile in healthy centenarians: a reappraisal of vascular risk factors. FASEB J 1998, 12: 433–437.

    PubMed  CAS  Google Scholar 

  9. Thillet J, Doucet C, Chapman J, et al.: Elevated lipoprotein(a) levels and small apo(a) isoforms are compatible with longevity evidence from a large population of French centenarians. Artherosclerosis 1997, 136: 389–394.

    Article  Google Scholar 

  10. Kraft HG, Sandholzer C, Menzel HJ, et al.: Apolipoprotein(a) alleles determine lipoprotein(a) particle density and concentration in plasma. Arterioscler Thromb 1992, 12: 302–306.

    PubMed  CAS  Google Scholar 

  11. Kronenberg F, Kronenberg MF, Kiechl S, et al.: Role of lipoprotein (a) and apolipoprotein (a) phenotype in atherogenesis: prospective results from the Bruneck study. Circulation 1999, 100: 1154–1160.

    PubMed  CAS  Google Scholar 

  12. Gazzaruso C, Geroldi D, Garzaniti A, et al.: Apolipoprotein (a) phenotypes as genetic markers of coronary atherosclerosis severity. Int J Cardiol 1998, 64: 277–284.

    Article  PubMed  CAS  Google Scholar 

  13. Wild SH, Fortmann SP, Marcovina SM: A prospective case-control study of lipoprotein (a) levels and apo (a) size and risk of coronary heart disease in Stanford five-city project participants. Arterioscler Thromb Vasc Biol 1997, 17: 239–245.

    PubMed  CAS  Google Scholar 

  14. Paultre F, Tuck CH, Boden-Albala B, et al.: Relation of apo(a) size to carotid atherosclerosis in an elderly multiethnic population. Arterioscler Thromb Vasc Biol 2002, 22: 141–146.

    Article  PubMed  CAS  Google Scholar 

  15. Rubin J, Paultre F, Tuck CH, et al.: Apolipoprotein [a] genotype influences isoform dominance pattern differently in African Americans and Caucasians. J Lipid Res 2002, 43: 234–244.

    PubMed  CAS  Google Scholar 

  16. Martin S, Pedro-Botet J, Joven J, et al.: Heterozygous apolipoprotein (a) status and protein expression as a risk factor for premature coronary heart disease. J Lab Clin Med 2002, 139: 181–187.

    Article  PubMed  CAS  Google Scholar 

  17. Scanu AM, Pfaffinger D, Lee JC, et al.: A single point mutation (trp72→arg) in human apo(a) kringle 4–37 associated with a lysine binding defect in Lp(a). Biochim Biophys Acta 1994, 1227: 41–45.

    PubMed  CAS  Google Scholar 

  18. Xia J, May LF, Koschinsky ML: Characterization of the basis of lipoprotein (a) lysine-binding heterogenity. J Lipid Res 2000, 41: 1578–1584.

    PubMed  CAS  Google Scholar 

  19. Armstrong VW, Harrach B, Robeneck H, et al.: Heterogeneity of human lipoprotein Lp(a): cytochemical and biochemical studies on the interaction of two Lp(a) species with the LDL receptor. J Lipid Res 1990, 31: 429–441.

    PubMed  CAS  Google Scholar 

  20. Boonmark NW, Lou JX, Yang ZJ, et al.: Modification of apolipoprotein(a) lysine-binding site reduces atherosclerosis in transgenic mice. J Clin Invest 1997, 100: 558–564.

    PubMed  CAS  Google Scholar 

  21. Nakajima K, Hinman J, Pfaffinger D, et al.: Changes in plasma triglyceride levels shift lipoprotein(a) density in parallel with that of low-density lipoprotein independently of apolipoprotein(a) size. Arterioscler Thromb Vasc Biol 2001, 21: 1238–1243.

    PubMed  CAS  Google Scholar 

  22. Edelstein C, Nakajima K, Pfaffinger D, et al.: Oxidative events cause degradation of apolipoprotein B100 but not apolipoprotein(a) and facilitate enzymatic cleavage of both proteins. Arterioscler Thromb Vasc Biol 2001, 21: 641.

    Google Scholar 

  23. Fless GM, Kirk EW, Klezovitch O, et al.: Effect of phospholipase A2 digestion on the conformation and lysine/fibrinogen binding properties of human lipoprotein(a). J Lipid Res 1999, 40: 583–592.

    PubMed  CAS  Google Scholar 

  24. Aggerbeck LP, Kezdy FJ, Scanu AM: Enzymatic probes of lipoprotein structure: Hydrolysis of human serum lowdensity lipoprotein-2 by phospholipase A2. J Biol Chem 1976, 251: 3823–3830.

    PubMed  CAS  Google Scholar 

  25. Hakala JK, Öörni K, Pentikäinen MO, et al.: Lipolysis of LDL by human secretory phospholipase A2 induces particle fusion and enhances the retention of LDL to human aortic proteoglycans. Arterioscler Thromb Vasc Biol 2001, 21: 1053–1058.

    PubMed  CAS  Google Scholar 

  26. Hanasaki K, Yamada K, Yamamoto S, et al.: Potent modification of low density lipoprotein by group X secretory phospholipase A2 is linked to macrophage foam cell formation. J Biol Chem 2002, 277: 29116–29124.

    Article  PubMed  CAS  Google Scholar 

  27. Edelstein C, Italia JI, Scanu AM: Polymorphonuclear cells isolated from human peripheral blood cleave lipoprotein(a) and apolipoprotein(a) at multiple interkringle sites via the enzyme elastase: generation of mini Lp(a) particles and apo(a) fragments. J Biol Chem 1997, 272: 11079–11087.

    Article  PubMed  CAS  Google Scholar 

  28. Edelstein C, Shapiro SD, Klezovitch O, et al.: Macrophage metalloelastase, MMP-12, cleaves human apolipoprotein(a) in the linker region between kringles IV-4 and IV-5. Potential relevance to lipoprotein(a) biology. J Biol Chem 1999, 274: 10019–10023.

    Article  PubMed  CAS  Google Scholar 

  29. Edelstein C, Italia JA, Klezovitch O, et al.: Functional and metabolic differences between elastase-generated fragments of human lipoprotein(a) and apolipoprotein(a). J Lipid Res 1996, 37: 1786–1801.

    PubMed  CAS  Google Scholar 

  30. Garner B, Merry AH, Royle L, et al.: Structural elucidation of the N- and O-glycans of human apolipoprotein(a). Role of O-glycans in conferring protease resistance. J Biol Chem 2001, 276: 22200–22208.

    Article  PubMed  CAS  Google Scholar 

  31. Haberland ME, Fless GM, Scanu AM, et al.: Malondialdehyde modification of lipoprotein(a) produces avid uptake by human monocyte-macrophages. J Biol Chem 1992, 267: 4143–4151.

    PubMed  CAS  Google Scholar 

  32. Hoover-Plow J, Khaitan A, Fless GM: Phospholipase A2 modification enhances lipoprotein(a) binding to the subendothelial matrix. Thromb Haemost 1998, 79: 640–648.

    PubMed  CAS  Google Scholar 

  33. Scanu AM, Edelstein C: Learning about the structure and biology of human lipoprotein(a) through dissection by enzymes of the elastase family: facts and speculations. J Lipid Res 1997, 38: 2193–2206.

    PubMed  CAS  Google Scholar 

  34. Scanu AM, Edelstein C, Klezovitch O: Dominant role of the C-terminal domain in the binding of apolipoprotein(a) to the protein core of proteoglycans and other members of the vascular matrix. Trends Cardiovasc Med 1999, 9: 196–200.

    Article  PubMed  CAS  Google Scholar 

  35. Williams KJ, Tabas I: The response-to retention- hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 1995, 15: 551–561.

    PubMed  CAS  Google Scholar 

  36. Kang C, Dominguez M, Loyau S, et al.: Lp(a) particles mold fibrin-binding properties of apo(a) in size-dependent manner. Arteroscler Thromb Vasc Biol 2002, 22: 1232–1238.

    Article  CAS  Google Scholar 

  37. Miles LA, Plow EF: Lp(a): an interloper into the fibrinolytic system? Thromb Haemost 1990, 63: 331–335.

    PubMed  CAS  Google Scholar 

  38. Rand ML, Sangrar W, Hancock MA, et al.: Apolipoprotein(a) enhances platelet responses to the thrombin receptor-activating peptide SFLLRN. Arterioscler Thromb Vasc Biol 1998, 18: 1393–1399.

    PubMed  CAS  Google Scholar 

  39. Buechler C, Ullrih H, Ritter M, et al.: Lipoprotein(a) up-regulates the expression of the plasminogen activator inhibitor 2 in human blood monocytes. Blood 2001, 97: 981–986.

    Article  PubMed  CAS  Google Scholar 

  40. Caplice NM, Panetta C, Peterson TE, et al.: Lipoprotein(a) binds and inactivates tissue factor pathway inhibitor: A novel link between lipoproteins and thrombosis. Blood 2001, 98: 2980–2987.

    Article  PubMed  CAS  Google Scholar 

  41. Haque NS, Zhang X, French DL, et al.: CC chemokine I-309 is the principal monocyte chemoattractant induced by apolipoprotein(a) in human vascular endothelial cells. Circulation 2000, 102: 786–792.

    PubMed  CAS  Google Scholar 

  42. Klezovitch O, Edelstein C, Scanu AM: Stimulation of interleukin-8 production in human THP-1 macrophages by apolipoprotein(a): evidence for a critical involvement of elements of its C-terminal domain. J Biol Chem 2001, 276: 46864–46869.

    Article  PubMed  CAS  Google Scholar 

  43. Lawn RM, Wade DP, Hammer RE, et al.: Atherogenesis in transgenic mice expressing human apolipoprotein(a). Nature 1992, 360: 670–672.

    Article  PubMed  CAS  Google Scholar 

  44. Berg K, Svindland A, Smith AJ, et al.: Spontaneous atherosclerosis in the proximal aorta of LPA transgenic mice on a normal diet. Atherosclerosis 2002, 163: 99–104.

    Article  PubMed  CAS  Google Scholar 

  45. Mancini FP, Newland DL, Mooser V, et al.: Relative contributions of apolipoprotein(a) and apolipoprotein B to the development of fatty lesions in the proximal aorta of mice. Arterioscler Thromb Vasc Biol 1995, 15: 1911–1916.

    PubMed  CAS  Google Scholar 

  46. Sanan DA, Newland DL, Tao R, et al.: Low density lipoprotein receptor-negative mice expressing human apolipoprotein B100 develop complex atherosclerotic lesions on a chow diet: no accentuation by apolipoprotein(a). Proc Natl Acad Sci USA 1998, 95: 4544–4549.

    Article  PubMed  CAS  Google Scholar 

  47. Kusumi Y, Scanu AM, McGill HC, et al.: Atherosclerosis in a rhesus monkey with genetic hypercholesterolemia and elevated plasma-Lp(a). Atherosclerosis 1993, 99: 165–174.

    Article  PubMed  CAS  Google Scholar 

  48. Fan J, Shimoyamada H, Sun H, et al.: Transgenic rabbits expressing human apolipoprotein (a) develop more extensive atherosclerotic lesions in response to a cholesterol-rich diet. Arterioscler Thromb Vasc Biol 2001, 21: 88–94.

    PubMed  CAS  Google Scholar 

  49. Fan J, Sun H, Unoki H, et al.: Enhanced atherosclerosis in LP(a) WHHL transgenic rabbits. Ann NY Acad Sci 2001, 947: 362–365.

    Article  PubMed  CAS  Google Scholar 

  50. Fu L, Jamieson DG, Usher DC, et al.: Gene expression of apolipoprotein (a) within the wall of human aorta and carotid arteries. Atherosclerosis 2001, 158: 303–311.

    Article  PubMed  CAS  Google Scholar 

  51. Rader DJ, Dugi KA: The endothelium and lipoproteins: insights from recent cell biology and animal studies. Sem Thromb Hemost 2000, 26: 521.

    Article  CAS  Google Scholar 

  52. Argraves MK, Kozarsky KF, Fallon JT, et al.: The atherogenic lipoprotein Lp(a) is internalized and degraded in a process mediated by the VLDL receptor. J Clin Invest 1997, 100: 2170–2181.

    Article  PubMed  CAS  Google Scholar 

  53. Jamieson DG, Usher DC, Rader DJ, et al.: Apolipoprotein(a) deposition in atherosclerotic plaques of cerebral vessels. A potential role for endothelial cells in lesion formation. Am J Pathol 1995, 147: 1567–1574.

    PubMed  CAS  Google Scholar 

  54. Haque NS, Fallon JT, Taubman MB, et al.: The chemokine receptor CCR8 mediates human endothelial cell chemotaxix induced by I-309 and Kaposi sarcoma herpes virus-encoded vMIP-I and by lipoprotein(a)-stimulated endothelial cell conditioned medium. Blood 2001, 97: 39–45.

    Article  PubMed  CAS  Google Scholar 

  55. Scanu AM: Atherothrombogenicity of lipoprotein (a): the debate. Am J Cardiol 1998, 82: 26–33.

    Article  Google Scholar 

  56. Fortunato JE, Bassiouny HS, Song RH, et al.: Apolipoprotein(a) fragments in relation to human carotid plaque instability. J Vasc Surg 2000, 32: 555–563.

    Article  PubMed  CAS  Google Scholar 

  57. Marcovina SM, Albers JJ, Scanu AM, et al.: Use of a reference material proposed by the International Federation of Clinical Chemistry and Laboratory Medicine to evaluate analytical methods for the determination of plasma lipoprotein(a). Clin Chem 2000, 46: 1956–1967.

    PubMed  CAS  Google Scholar 

  58. Scanu AM, Hinman J: Issues concerning the monitoring of statin therapy in hypercholesterolemic subjects with high plasma lipoprotein(a) levels. Lipids 2002, 37: 439–444.

    Article  PubMed  CAS  Google Scholar 

  59. Scanu AM: The role of lipoprotein (a) in the pathogenesis of atherosclerotic cardiovascular disease and its utility as predictor of coronary heart disease events. Curr Cardiol Reports 2001, 3: 385–390.

    CAS  Google Scholar 

  60. Morishita R, Yamada S, Yamamoto K, et al.: Novel therapeutic strategies for atherosclerosis. Ribozyme oligonucleotides against apolipoprotein(a) selectively inhibit apolipoprotein(a) but not plasminogen gene expression. Circulation 1998, 98: 1898–1904.

    PubMed  CAS  Google Scholar 

  61. Frank S, Gauster M, Strauss J, et al.: Adenovirus-mediated apo(a)-antisense-RNA expression efficiently inhibits apo(a) synthesis in vitro and in vivo. Gene Therapy 2001, 8: 425–430.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scanu, A.M. Lipoprotein(a) and the atherothrombotic process: Mechanistic insights and clinical implications. Curr Atheroscler Rep 5, 106–113 (2003). https://doi.org/10.1007/s11883-003-0081-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-003-0081-3

Keywords

Navigation