Skip to main content

Advertisement

Log in

Monoclonal Antibody Therapy in Childhood Asthma

  • Pediatric Allergy and Immunology (W Dolen, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

There has been an explosion of monoclonal antibodies in the treatment of severe uncontrolled adult asthma. Studies have now been published in severe pediatric asthma. There are numerous questions that need to be answered in determining whether these modalities are appropriate and safe in children.

Recent Findings

This is a narrative review examining the latest pediatric literature on monoclonal antibodies, both approved and in the pipeline, for uncontrolled asthma. Presently, all of the biologics are positioned to treat patients with underlying type 2 high disease. Two monoclonal antibodies are approved for children 6 years of age and older, omalizumab and mepolizumab, with more likely approved in the near future.

Summary

The effect of these agents in controlling severe pediatric asthma is promising. Data is limited to long-term efficacy and safety, and whether any agent has an effect on the natural history of asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Black LI BV. Tables of Summary Health Statistics for U.S. Children: 2018 National Health Interview Survey. Table C-1. 2019.

  2. Zahran HS, Bailey CM, Damon SA, Garbe PL, Breysse PN. Vital signs: asthma in children - United States, 2001–2016. MMWR Morb Mortal Wkly Rep. 2018;67(5):149–55. https://doi.org/10.15585/mmwr.mm6705e1.

    Article  PubMed Central  Google Scholar 

  3. Guilbert TW, Bacharier LB, Fitzpatrick AM. Severe asthma in children. J Allergy Clin Immunol Pract. 2014;2(5):489–500. https://doi.org/10.1016/j.jaip.2014.06.022.

    Article  PubMed Central  Google Scholar 

  4. Buelo A, McLean S, Julious S, Flores-Kim J, Bush A, Henderson J, et al. At-risk children with asthma (ARC): a systematic review. Thorax. 2018;73(9):813–24. https://doi.org/10.1136/thoraxjnl-2017-210939.

    Article  PubMed Central  Google Scholar 

  5. Blaiss MS, Castro M, Chipps BE, Zitt M, Panettieri RA Jr, Foggs MB. Guiding principles for use of newer biologics and bronchial thermoplasty for patients with severe asthma. Ann Allergy Asthma Immunol. 2017;119(6):533–40. https://doi.org/10.1016/j.anai.2017.09.058.

    Article  Google Scholar 

  6. •• Kuruvilla ME, Lee FE, Lee GB. Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin Rev Allergy Immunol. 2019;56(2):219–33. https://doi.org/10.1007/s12016-018-8712-1. Clear and concise update on phenotypes and endotypes in asthma.

    Article  PubMed Central  Google Scholar 

  7. Gauthier M, Ray A, Wenzel SE. Evolving concepts of asthma. Am J Respir Crit Care Med. 2015;192(6):660–8. https://doi.org/10.1164/rccm.201504-0763PP.

    Article  CAS  PubMed Central  Google Scholar 

  8. Bush A. Pathophysiological mechanisms of asthma. Front Pediatr. 2019;7:68. https://doi.org/10.3389/fped.2019.00068.

    Article  PubMed Central  Google Scholar 

  9. Woodruff PG, Modrek B, Choy DF, Jia G, Abbas AR, Ellwanger A, et al. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med. 2009;180(5):388–95. https://doi.org/10.1164/rccm.200903-0392OC.

    Article  CAS  PubMed Central  Google Scholar 

  10. Johansson SG, Hourihane JO, Bousquet J, Bruijnzeel-Koomen C, Dreborg S, Haahtela T, et al. A revised nomenclature for allergy. An EAACI position statement from the EAACI nomenclature task force. Allergy. 2001;56(9):813–24. https://doi.org/10.1034/j.1398-9995.2001.t01-1-00001.x.

    Article  CAS  Google Scholar 

  11. Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol. 2015;16(1):45–56. https://doi.org/10.1038/ni.3049.

    Article  CAS  Google Scholar 

  12. Licari A, Castagnoli R, Brambilla I, Marseglia A, Tosca MA, Marseglia GL, et al. Asthma endotyping and biomarkers in childhood asthma. Pediatr Allergy Immunol Pulmonol. 2018;31(2):44–55. https://doi.org/10.1089/ped.2018.0886.

    Article  PubMed Central  Google Scholar 

  13. Price DB, Rigazio A, Campbell JD, Bleecker ER, Corrigan CJ, Thomas M, et al. Blood eosinophil count and prospective annual asthma disease burden: a UK cohort study. Lancet Respir Med. 2015;3(11):849–58. https://doi.org/10.1016/s2213-2600(15)00367-7.

    Article  Google Scholar 

  14. Israel E, Reddel HK. Severe and difficult-to-treat asthma in adults. N Engl J Med. 2017;377(10):965–76. https://doi.org/10.1056/NEJMra1608969.

    Article  CAS  Google Scholar 

  15. Korevaar DA, Westerhof GA, Wang J, Cohen JF, Spijker R, Sterk PJ, et al. Diagnostic accuracy of minimally invasive markers for detection of airway eosinophilia in asthma: a systematic review and meta-analysis. Lancet Respir Med. 2015;3(4):290–300. https://doi.org/10.1016/s2213-2600(15)00050-8.

    Article  Google Scholar 

  16. •• Busse WW. Biological treatments for severe asthma: a major advance in asthma care. Allergol Int. 2019;68(2):158–66. https://doi.org/10.1016/j.alit.2019.01.004. An excellent review in understanding the roles of biologics in management of severe asthma.

    Article  Google Scholar 

  17. Akar-Ghibril N, Casale T, Custovic A, Phipatanakul W. Allergic endotypes and phenotypes of asthma. J Allergy Clin Immunol Pract. 2020;8(2):429–40. https://doi.org/10.1016/j.jaip.2019.11.008.

    Article  Google Scholar 

  18. Fitzpatrick AM, Jackson DJ, Mauger DT, Boehmer SJ, Phipatanakul W, Sheehan WJ, et al. Individualized therapy for persistent asthma in young children. J Allergy Clin Immunol. 2016;138(6):1608–18.e12. https://doi.org/10.1016/j.jaci.2016.09.028.

    Article  PubMed Central  Google Scholar 

  19. Siroux V, Oryszczyn MP, Paty E, Kauffmann F, Pison C, Vervloet D, et al. Relationships of allergic sensitization, total immunoglobulin E and blood eosinophils to asthma severity in children of the EGEA study. Clin Exp Allergy. 2003;33(6):746–51. https://doi.org/10.1046/j.1365-2222.2003.01674.x.

    Article  CAS  Google Scholar 

  20. Fitzpatrick AM, Gaston BM, Erzurum SC, Teague WG. Features of severe asthma in school-age children: atopy and increased exhaled nitric oxide. J Allergy Clin Immunol. 2006;118(6):1218–25. https://doi.org/10.1016/j.jaci.2006.08.019.

    Article  CAS  PubMed Central  Google Scholar 

  21. Chibana K, Trudeau JB, Mustovich AT, Hu H, Zhao J, Balzar S, et al. IL-13 induced increases in nitrite levels are primarily driven by increases in inducible nitric oxide synthase as compared with effects on arginases in human primary bronchial epithelial cells. Clin Exp Allergy. 2008;38(6):936–46. https://doi.org/10.1111/j.1365-2222.2008.02969.x.

    Article  CAS  Google Scholar 

  22. Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med. 2011;184(5):602–15. https://doi.org/10.1164/rccm.9120-11ST.

    Article  CAS  PubMed Central  Google Scholar 

  23. Dweik RA, Sorkness RL, Wenzel S, Hammel J, Curran-Everett D, Comhair SA, et al. Use of exhaled nitric oxide measurement to identify a reactive, at-risk phenotype among patients with asthma. Am J Respir Crit Care Med. 2010;181(10):1033–41. https://doi.org/10.1164/rccm.200905-0695OC.

    Article  CAS  PubMed Central  Google Scholar 

  24. Petsky HL, Cates CJ, Kew KM, Chang AB. Tailoring asthma treatment on eosinophilic markers (exhaled nitric oxide or sputum eosinophils): a systematic review and meta-analysis. Thorax. 2018;73(12):1110–9. https://doi.org/10.1136/thoraxjnl-2018-211540.

    Article  Google Scholar 

  25. Bossley CJ, Fleming L, Gupta A, Regamey N, Frith J, Oates T, et al. Pediatric severe asthma is characterized by eosinophilia and remodeling without T(H)2 cytokines. J Allergy Clin Immunol. 2012;129(4):974–82.e13. https://doi.org/10.1016/j.jaci.2012.01.059.

    Article  CAS  PubMed Central  Google Scholar 

  26. Samitas K, Zervas E, Gaga M. T2-low asthma: current approach to diagnosis and therapy. Curr Opin Pulm Med. 2017;23(1):48–55. https://doi.org/10.1097/mcp.0000000000000342.

    Article  CAS  Google Scholar 

  27. Wang F, He XY, Baines KJ, Gunawardhana LP, Simpson JL, Li F, et al. Different inflammatory phenotypes in adults and children with acute asthma. Eur Respir J. 2011;38(3):567–74. https://doi.org/10.1183/09031936.00170110.

    Article  CAS  Google Scholar 

  28. Just J, Bourgoin-Heck M, Amat F. Clinical phenotypes in asthma during childhood. Clin Exp Allergy. 2017;47(7):848–55. https://doi.org/10.1111/cea.12939.

    Article  CAS  Google Scholar 

  29. Just J, Gouvis-Echraghi R, Couderc R, Guillemot-Lambert N, Saint-Pierre P. Novel severe wheezy young children phenotypes: boys atopic multiple-trigger and girls nonatopic uncontrolled wheeze. J Allergy Clin Immunol. 2012;130(1):103–10.e8. https://doi.org/10.1016/j.jaci.2012.02.041.

    Article  Google Scholar 

  30. Wood LG, Baines KJ, Fu J, Scott HA, Gibson PG. The neutrophilic inflammatory phenotype is associated with systemic inflammation in asthma. Chest. 2012;142(1):86–93. https://doi.org/10.1378/chest.11-1838.

    Article  CAS  Google Scholar 

  31. Fajt ML, Wenzel SE. Asthma phenotypes and the use of biologic medications in asthma and allergic disease: the next steps toward personalized care. J Allergy Clin Immunol. 2015;135(2):299–310; quiz 1. https://doi.org/10.1016/j.jaci.2014.12.1871.

    Article  Google Scholar 

  32. Bozzetto S, Carraro S, Zanconato S, Baraldi E. Severe asthma in childhood: diagnostic and management challenges. Curr Opin Pulm Med. 2015;21(1):16–21. https://doi.org/10.1097/mcp.0000000000000121.

    Article  Google Scholar 

  33. Bender BG, Pedan A, Varasteh LT. Adherence and persistence with fluticasone propionate/salmeterol combination therapy. J Allergy Clin Immunol. 2006;118(4):899–904. https://doi.org/10.1016/j.jaci.2006.07.002.

    Article  CAS  Google Scholar 

  34. Berger W, Gupta N, McAlary M, Fowler-Taylor A. Evaluation of long-term safety of the anti-IgE antibody, omalizumab, in children with allergic asthma. Ann Allergy Asthma Immunol. 2003;91(2):182–8. https://doi.org/10.1016/s1081-1206(10)62175-8.

    Article  CAS  Google Scholar 

  35. Brodlie M, McKean MC, Moss S, Spencer DA. The oral corticosteroid-sparing effect of omalizumab in children with severe asthma. Arch Dis Child. 2012;97(7):604–9. https://doi.org/10.1136/archdischild-2011-301570.

    Article  Google Scholar 

  36. Busse WW, Morgan WJ, Gergen PJ, Mitchell HE, Gern JE, Liu AH, et al. Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. N Engl J Med. 2011;364(11):1005–15. https://doi.org/10.1056/NEJMoa1009705.

    Article  CAS  PubMed Central  Google Scholar 

  37. •• Busse WW, Haselkorn T, Rosén K, Trzaskoma BL, Ortiz B, Szefler SJ. Greater treatment benefit with omalizumab in children with increased asthma severity: exploratory analyses from the Inner-City Anti-IgE Therapy for Asthma (ICATA) Study. J Allergy Clin Immunol. 2018a;141(2):AB14. https://doi.org/10.1016/j.jaci.2017.12.045. Further analysis of the role of omalizumab in inner-city children with asthma.

    Article  Google Scholar 

  38. Busse W, Buhl R, Fernandez Vidaurre C, Blogg M, Zhu J, Eisner MD, et al. Omalizumab and the risk of malignancy: results from a pooled analysis. J Allergy Clin Immunol. 2012;129(4):983–9.e6. https://doi.org/10.1016/j.jaci.2012.01.033.

    Article  CAS  Google Scholar 

  39. Deschildre A, Marguet C, Salleron J, Pin I, Rittie JL, Derelle J, et al. Add-on omalizumab in children with severe allergic asthma: a 1-year real life survey. Eur Respir J. 2013;42(5):1224–33. https://doi.org/10.1183/09031936.00149812.

    Article  CAS  Google Scholar 

  40. Deschildre A, Marguet C, Langlois C, Pin I, Rittie JL, Derelle J, et al. Real-life long-term omalizumab therapy in children with severe allergic asthma. Eur Respir J. 2015;46(3):856–9. https://doi.org/10.1183/09031936.00008115.

    Article  CAS  Google Scholar 

  41. Deschildre A, Roussel J, Drumez E, Abou-Taam R, Rames C, Le Roux P, et al. Omalizumab discontinuation in children with severe allergic asthma: an observational real-life study. Allergy. 2019;74(5):999–1003. https://doi.org/10.1111/all.13678.

    Article  Google Scholar 

  42. Hanania NA, Alpan O, Hamilos DL, Condemi JJ, Reyes-Rivera I, Zhu J, et al. Omalizumab in severe allergic asthma inadequately controlled with standard therapy: a randomized trial. Ann Intern Med. 2011;154(9):573–82. https://doi.org/10.7326/0003-4819-154-9-201105030-00002.

    Article  Google Scholar 

  43. Hanania NA, Wenzel S, Rosen K, Hsieh HJ, Mosesova S, Choy DF, et al. Exploring the effects of omalizumab in allergic asthma: an analysis of biomarkers in the EXTRA study. Am J Respir Crit Care Med. 2013;187(8):804–11. https://doi.org/10.1164/rccm.201208-1414OC.

    Article  CAS  Google Scholar 

  44. Kulus M, Hebert J, Garcia E, Fowler Taylor A, Fernandez Vidaurre C, Blogg M. Omalizumab in children with inadequately controlled severe allergic (IgE-mediated) asthma. Curr Med Res Opin. 2010;26(6):1285–93. https://doi.org/10.1185/03007991003771338.

    Article  CAS  Google Scholar 

  45. Lanier B, Bridges T, Kulus M, Taylor AF, Berhane I, Vidaurre CF. Omalizumab for the treatment of exacerbations in children with inadequately controlled allergic (IgE-mediated) asthma. J Allergy Clin Immunol. 2009;124(6):1210–6. https://doi.org/10.1016/j.jaci.2009.09.021.

    Article  CAS  Google Scholar 

  46. Lemanske RF Jr, Nayak A, McAlary M, Everhard F, Fowler-Taylor A, Gupta N. Omalizumab improves asthma-related quality of life in children with allergic asthma. Pediatrics. 2002;110(5):e55. https://doi.org/10.1542/peds.110.5.e55.

    Article  Google Scholar 

  47. Milgrom H, Berger W, Nayak A, Gupta N, Pollard S, McAlary M, et al. Treatment of childhood asthma with anti-immunoglobulin E antibody (omalizumab). Pediatrics. 2001;108(2):E36. https://doi.org/10.1542/peds.108.2.e36.

    Article  CAS  Google Scholar 

  48. Milgrom H, Fowler-Taylor A, Vidaurre CF, Jayawardene S. Safety and tolerability of omalizumab in children with allergic (IgE-mediated) asthma. Curr Med Res Opin. 2011;27(1):163–9. https://doi.org/10.1185/03007995.2010.539502.

    Article  CAS  Google Scholar 

  49. Silkoff PE, Romero FA, Gupta N, Townley RG, Milgrom H. Exhaled nitric oxide in children with asthma receiving Xolair (omalizumab), a monoclonal anti-immunoglobulin E antibody. Pediatrics. 2004;113(4):e308–12. https://doi.org/10.1542/peds.113.4.e308.

    Article  Google Scholar 

  50. Teach SJ, Gill MA, Togias A, Sorkness CA, Arbes SJ Jr, Calatroni A, et al. Preseasonal treatment with either omalizumab or an inhaled corticosteroid boost to prevent fall asthma exacerbations. J Allergy Clin Immunol. 2015;136(6):1476–85. https://doi.org/10.1016/j.jaci.2015.09.008.

    Article  CAS  PubMed Central  Google Scholar 

  51. Gupta A, Pouliquen I, Austin D, Price RG, Kempsford R, Steinfeld J, et al. Subcutaneous mepolizumab in children aged 6 to 11 years with severe eosinophilic asthma. Pediatr Pulmonol. 2019a;54(12):1957–67. https://doi.org/10.1002/ppul.24508.

    Article  PubMed Central  Google Scholar 

  52. Gupta A, Ikeda M, Geng B, Azmi J, Price RG, Bradford ES, et al. Long-term safety and pharmacodynamics of mepolizumab in children with severe asthma with an eosinophilic phenotype. J Allergy Clin Immunol. 2019b;144(5):1336–42.e7. https://doi.org/10.1016/j.jaci.2019.08.005.

    Article  CAS  Google Scholar 

  53. Bleecker ER, FitzGerald JM, Chanez P, Papi A, Weinstein SF, Barker P, et al. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting beta2-agonists (SIROCCO): a randomised, multicentre, placebo-controlled phase 3 trial. Lancet. 2016a;388(10056):2115–27. https://doi.org/10.1016/s0140-6736(16)31324-1.

    Article  CAS  Google Scholar 

  54. Ferguson GT, FitzGerald JM, Bleecker ER, Laviolette M, Bernstein D, LaForce C, et al. Benralizumab for patients with mild to moderate, persistent asthma (BISE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir Med. 2017a;5(7):568–76. https://doi.org/10.1016/s2213-2600(17)30190-x.

    Article  CAS  Google Scholar 

  55. FitzGerald JM, Bleecker ER, Nair P, Korn S, Ohta K, Lommatzsch M, et al. Benralizumab, an anti-interleukin-5 receptor alpha monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2016a;388(10056):2128–41. https://doi.org/10.1016/s0140-6736(16)31322-8.

    Article  CAS  Google Scholar 

  56. Busse WW, Maspero JF, Rabe KF, Papi A, Wenzel SE, Ford LB, et al. Liberty asthma QUEST: phase 3 randomized, double-blind, placebo-controlled, parallel-group study to evaluate dupilumab efficacy/safety in patients with uncontrolled. Moderate-to-Severe Asthma Adv Ther. 2018b;35(5):737–48. https://doi.org/10.1007/s12325-018-0702-4.

    Article  CAS  Google Scholar 

  57. Castro M, Corren J, Pavord ID, Maspero J, Wenzel S, Rabe KF, et al. Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. N Engl J Med. 2018;378(26):2486–96. https://doi.org/10.1056/NEJMoa1804092.

    Article  CAS  Google Scholar 

  58. Corren J, Castro M, Chanez P, Fabbri L, Joish VN, Amin N, et al. Dupilumab improves symptoms, quality of life, and productivity in uncontrolled persistent asthma. Ann Allergy Asthma Immunol. 2019;122(1):41–9.e2. https://doi.org/10.1016/j.anai.2018.08.005.

    Article  CAS  Google Scholar 

  59. Corren J, Castro M, O'Riordan T, Hanania NA, Pavord ID, Quirce S, et al. Dupilumab efficacy in patients with uncontrolled, moderate-to-severe allergic asthma. J Allergy Clin Immunol Pract. 2020;8(2):516–26. https://doi.org/10.1016/j.jaip.2019.08.050.

    Article  Google Scholar 

  60. Rabe KF, Nair P, Brusselle G, Maspero JF, Castro M, Sher L, et al. Efficacy and safety of dupilumab in glucocorticoid-dependent severe asthma. N Engl J Med. 2018;378(26):2475–85. https://doi.org/10.1056/NEJMoa1804093.

    Article  CAS  Google Scholar 

  61. Schulman ES. Development of a monoclonal anti-immunoglobulin E antibody (omalizumab) for the treatment of allergic respiratory disorders. Am J Respir Crit Care Med. 2001;164(8 Pt 2):S6–11. https://doi.org/10.1164/ajrccm.164.supplement_1.2103025.

    Article  CAS  Google Scholar 

  62. Holgate S, Casale T, Wenzel S, Bousquet J, Deniz Y, Reisner C. The anti-inflammatory effects of omalizumab confirm the central role of IgE in allergic inflammation. J Allergy Clin Immunol. 2005;115(3):459–65. https://doi.org/10.1016/j.jaci.2004.11.053.

    Article  CAS  Google Scholar 

  63. Prussin C, Griffith DT, Boesel KM, Lin H, Foster B, Casale TB. Omalizumab treatment downregulates dendritic cell FcepsilonRI expression. J Allergy Clin Immunol. 2003;112(6):1147–54. https://doi.org/10.1016/j.jaci.2003.10.003.

    Article  CAS  Google Scholar 

  64. Licari A, Castagnoli R, Panfili E, Marseglia A, Brambilla I, Marseglia GL. An update on anti-IgE therapy in pediatric respiratory diseases. Curr Respir Med Rev. 2017;13(1):22–9. https://doi.org/10.2174/1573398x13666170616110738.

    Article  CAS  PubMed Central  Google Scholar 

  65. Djukanovic R, Wilson SJ, Kraft M, Jarjour NN, Steel M, Chung KF, et al. Effects of treatment with anti-immunoglobulin E antibody omalizumab on airway inflammation in allergic asthma. Am J Respir Crit Care Med. 2004;170(6):583–93. https://doi.org/10.1164/rccm.200312-1651OC.

    Article  Google Scholar 

  66. Holgate S, Smith N, Massanari M, Jimenez P. Effects of omalizumab on markers of inflammation in patients with allergic asthma. Allergy. 2009;64(12):1728–36. https://doi.org/10.1111/j.1398-9995.2009.02201.x.

    Article  CAS  Google Scholar 

  67. Gill MA, Bajwa G, George TA, Dong CC, Dougherty II, Jiang N, et al. Counterregulation between the FcepsilonRI pathway and antiviral responses in human plasmacytoid dendritic cells. J Immunol. 2010;184(11):5999–6006. https://doi.org/10.4049/jimmunol.0901194.

    Article  CAS  PubMed Central  Google Scholar 

  68. Durrani SR, Montville DJ, Pratt AS, Sahu S, DeVries MK, Rajamanickam V, et al. Innate immune responses to rhinovirus are reduced by the high-affinity IgE receptor in allergic asthmatic children. J Allergy Clin Immunol. 2012;130(2):489–95. https://doi.org/10.1016/j.jaci.2012.05.023.

    Article  CAS  PubMed Central  Google Scholar 

  69. Cardet JC, Casale TB. New insights into the utility of omalizumab. J Allergy Clin Immunol. 2019;143(3):923–6.e1. https://doi.org/10.1016/j.jaci.2019.01.016.

    Article  PubMed Central  Google Scholar 

  70. Rodrigo GJ, Neffen H. Systematic review on the use of omalizumab for the treatment of asthmatic children and adolescents. Pediatr Allergy Immunol. 2015;26(6):551–6. https://doi.org/10.1111/pai.12405.

    Article  Google Scholar 

  71. Hill DA, Siracusa MC, Ruymann KR, Tait Wojno ED, Artis D, Spergel JM. Omalizumab therapy is associated with reduced circulating basophil populations in asthmatic children. Allergy. 2014;69(5):674–7. https://doi.org/10.1111/all.12375.

    Article  CAS  PubMed Central  Google Scholar 

  72. Genentech I. Omalizumab prescribing information. https://www.gene.com/download/pdf/xolair_prescribing.pdf. Accessed 25 Feb 2020.

  73. Soler M, Matz J, Townley R, Buhl R, O'Brien J, Fox H, et al. The anti-IgE antibody omalizumab reduces exacerbations and steroid requirement in allergic asthmatics. Eur Respir J. 2001;18(2):254–61. https://doi.org/10.1183/09031936.01.00092101.

    Article  CAS  Google Scholar 

  74. Busse W, Corren J, Lanier BQ, McAlary M, Fowler-Taylor A, Cioppa GD, et al. Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. J Allergy Clin Immunol. 2001;108(2):184–90. https://doi.org/10.1067/mai.2001.117880.

    Article  CAS  Google Scholar 

  75. Licari A, Manti S, Castagnoli R, Marseglia A, Foiadelli T, Brambilla I, et al. Immunomodulation in pediatric asthma. Front Pediatr. 2019;7:289. https://doi.org/10.3389/fped.2019.00289.

    Article  PubMed Central  Google Scholar 

  76. Licari A, Marseglia G, Castagnoli R, Marseglia A, Ciprandi G. The discovery and development of omalizumab for the treatment of asthma. Expert Opin Drug Discov. 2015;10(9):1033–42. https://doi.org/10.1517/17460441.2015.1048220.

    Article  CAS  Google Scholar 

  77. Licari A, Marseglia A, Caimmi S, Castagnoli R, Foiadelli T, Barberi S, et al. Omalizumab in children. Paediatr Drugs. 2014;16(6):491–502. https://doi.org/10.1007/s40272-014-0107-z.

    Article  PubMed Central  Google Scholar 

  78. •• Chipps BE, Lanier B, Milgrom H, Deschildre A, Hedlin G, Szefler SJ, et al. Omalizumab in children with uncontrolled allergic asthma: review of clinical trial and real-world experience. J Allergy Clin Immunol. 2017;139(5):1431–44. https://doi.org/10.1016/j.jaci.2017.03.002. Excellent overview covering the role of omalizumab in pediatric asthma.

    Article  CAS  Google Scholar 

  79. Food and Drug Administration. 2015. https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2016/103976Orig1s5225ltr.pdf. Accessed 25 Feb 2020.

  80. Johnston NW, Johnston SL, Norman GR, Dai J, Sears MR. The September epidemic of asthma hospitalization: school children as disease vectors. J Allergy Clin Immunol. 2006;117(3):557–62. https://doi.org/10.1016/j.jaci.2005.11.034.

    Article  Google Scholar 

  81. Normansell R, Walker S, Milan SJ, Walters EH, Nair P. Omalizumab for asthma in adults and children. Cochrane Database Syst Rev. 2014;(1):Cd003559. https://doi.org/10.1002/14651858.CD003559.pub4.

  82. Hendeles L, Khan YR, Shuster JJ, Chesrown SE, Abu-Hasan M. Omalizumab therapy for asthma patients with poor adherence to inhaled corticosteroid therapy. Ann Allergy Asthma Immunol. 2015;114(1):58–62.e2. https://doi.org/10.1016/j.anai.2014.10.012.

    Article  CAS  PubMed Central  Google Scholar 

  83. Pitrez PM, de Souza RG, Roncada C, Heinzmann-Filho JP, Santos G, Pinto LA, et al. Impact of omalizumab in children from a middle-income country with severe therapy-resistant asthma: a real-life study. Pediatr Pulmonol. 2017;52(11):1408–13. https://doi.org/10.1002/ppul.23845.

    Article  Google Scholar 

  84. Long A, Rahmaoui A, Rothman KJ, Guinan E, Eisner M, Bradley MS, et al. Incidence of malignancy in patients with moderate-to-severe asthma treated with or without omalizumab. J Allergy Clin Immunol. 2014;134(3):560–7.e4. https://doi.org/10.1016/j.jaci.2014.02.007.

    Article  CAS  Google Scholar 

  85. Sese L, Schneider M, Bourgoin M, Saint-Pierre P, Lambert N, Guiddir T, et al. Asthma with multiple allergic comorbidities is associated with complete response to omalizumab. Clin Exp Allergy. 2019;49(5):733–5. https://doi.org/10.1111/cea.13373.

    Article  Google Scholar 

  86. Bourgoin-Heck M, Amat F, Trouve C, Bernard A, Magny JP, Lambert N, et al. Omalizumab could be effective in children with severe eosinophilic non-allergic asthma. Pediatr Allergy Immunol. 2018;29(1):90–3. https://doi.org/10.1111/pai.12813.

    Article  CAS  Google Scholar 

  87. Preventing Asthma in High Risk Kids (PARK). https://clinicaltrials.gov/ct2/show/NCT02570984?term=preventing+asthma+in+high+risk+kids&draw=2&rank=1. Accessed 25 Feb 2020.

  88. Iftikhar IH, Schimmel M, Bender W, Swenson C, Amrol D. Comparative efficacy of anti IL-4, IL-5 and IL-13 drugs for treatment of eosinophilic asthma: a network meta-analysis. Lung. 2018;196(5):517–30. https://doi.org/10.1007/s00408-018-0151-5.

    Article  CAS  Google Scholar 

  89. Carr TF, Zeki AA, Kraft M. Eosinophilic and noneosinophilic asthma. Am J Respir Crit Care Med. 2018;197(1):22–37. https://doi.org/10.1164/rccm.201611-2232PP.

    Article  CAS  PubMed Central  Google Scholar 

  90. Busse W, Chupp G, Nagase H, Albers FC, Doyle S, Shen Q, et al. Anti-IL-5 treatments in patients with severe asthma by blood eosinophil thresholds: indirect treatment comparison. J Allergy Clin Immunol. 2019;143(1):190–200.e20. https://doi.org/10.1016/j.jaci.2018.08.031.

    Article  CAS  Google Scholar 

  91. Bel EH, Wenzel SE, Thompson PJ, Prazma CM, Keene ON, Yancey SW, et al. Oral glucocorticoid-sparing effect of mepolizumab in eosinophilic asthma. N Engl J Med. 2014;371(13):1189–97. https://doi.org/10.1056/NEJMoa1403291.

    Article  CAS  Google Scholar 

  92. Lugogo N, Domingo C, Chanez P, Leigh R, Gilson MJ, Price RG, et al. Long-term efficacy and safety of mepolizumab in patients with severe eosinophilic asthma: a multi-center, open-label, phase IIIb study. Clin Ther. 2016;38(9):2058–70.e1. https://doi.org/10.1016/j.clinthera.2016.07.010.

    Article  CAS  Google Scholar 

  93. Ortega HG, Liu MC, Pavord ID, Brusselle GG, FitzGerald JM, Chetta A, et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N Engl J Med. 2014;371(13):1198–207. https://doi.org/10.1056/NEJMoa1403290.

    Article  CAS  Google Scholar 

  94. Chupp GL, Bradford ES, Albers FC, Bratton DJ, Wang-Jairaj J, Nelsen LM, et al. Efficacy of mepolizumab add-on therapy on health-related quality of life and markers of asthma control in severe eosinophilic asthma (MUSCA): a randomised, double-blind, placebo-controlled, parallel-group, multicentre, phase 3b trial. Lancet Respir Med. 2017;5(5):390–400. https://doi.org/10.1016/s2213-2600(17)30125-x.

    Article  Google Scholar 

  95. Pham TH, Damera G, Newbold P, Ranade K. Reductions in eosinophil biomarkers by benralizumab in patients with asthma. Respir Med. 2016;111:21–9. https://doi.org/10.1016/j.rmed.2016.01.003.

    Article  Google Scholar 

  96. Gandhi NA, Bennett BL, Graham NM, Pirozzi G, Stahl N, Yancopoulos GD. Targeting key proximal drivers of type 2 inflammation in disease. Nat Rev Drug Discov. 2016;15(1):35–50. https://doi.org/10.1038/nrd4624.

    Article  CAS  Google Scholar 

  97. Doherty TA, Broide DH. Group 2 innate lymphoid cells: new players in human allergic diseases. J Investig Allergol Clin Immunol. 2015;25(1):1–11 quiz 2p following.

    CAS  PubMed Central  Google Scholar 

  98. Vatrella A, Fabozzi I, Calabrese C, Maselli R, Pelaia G. Dupilumab: a novel treatment for asthma. J Asthma Allergy. 2014;7:123–30. https://doi.org/10.2147/jaa.S52387.

    Article  PubMed Central  Google Scholar 

  99. Licona-Limon P, Kim LK, Palm NW, Flavell RA. TH2, allergy and group 2 innate lymphoid cells. Nat Immunol. 2013;14(6):536–42. https://doi.org/10.1038/ni.2617.

    Article  CAS  Google Scholar 

  100. Steinke JW, Borish L. Th2 cytokines and asthma. Interleukin-4: its role in the pathogenesis of asthma, and targeting it for asthma treatment with interleukin-4 receptor antagonists. Respir Res. 2001;2(2):66–70. https://doi.org/10.1186/rr40.

    Article  CAS  PubMed Central  Google Scholar 

  101. Corren J. Role of interleukin-13 in asthma. Curr Allergy Asthma Rep. 2013;13(5):415–20. https://doi.org/10.1007/s11882-013-0373-9.

    Article  CAS  Google Scholar 

  102. Kau AL, Korenblat PE. Anti-interleukin 4 and 13 for asthma treatment in the era of endotypes. Curr Opin Allergy Clin Immunol. 2014;14(6):570–5. https://doi.org/10.1097/aci.0000000000000108.

    Article  CAS  PubMed Central  Google Scholar 

  103. Rogliani P, Calzetta L, Matera MG, Laitano R, Ritondo BL, Hanania NA, et al. Severe asthma and biological therapy: when, which, and for whom. Pulm Ther. 2019. https://doi.org/10.1007/s41030-019-00109-1.

  104. Simpson EL, Paller AS, Siegfried EC, Boguniewicz M, Sher L, Gooderham MJ, et al. Efficacy and safety of dupilumab in adolescents with uncontrolled moderate to severe atopic dermatitis: a phase 3 randomized clinical trial. JAMA Dermatol. 2019;156:44. https://doi.org/10.1001/jamadermatol.2019.3336.

    Article  PubMed Central  Google Scholar 

  105. Castro M, Zangrilli J, Wechsler ME, Bateman ED, Brusselle GG, Bardin P, et al. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respir Med. 2015;3(5):355–66. https://doi.org/10.1016/S2213-2600(15)00042-9.

    Article  CAS  Google Scholar 

  106. Bjermer L, Lemiere C, Maspero J, Weiss S, Zangrilli J, Germinaro M. Reslizumab for inadequately controlled asthma with elevated blood eosinophil levels: a randomized phase 3 study. Chest. 2016;150(4):789–98. https://doi.org/10.1016/j.chest.2016.03.032.

    Article  Google Scholar 

  107. Spergel JM, Rothenberg ME, Collins MH, Furuta GT, Markowitz JE, Fuchs G 3rd, et al. Reslizumab in children and adolescents with eosinophilic esophagitis: results of a double-blind, randomized, placebo-controlled trial. J Allergy Clin Immunol. 2012;129(2):456–63, 63.e1–3. https://doi.org/10.1016/j.jaci.2011.11.044.

    Article  CAS  Google Scholar 

  108. Murphy K, Jacobs J, Bjermer L, Fahrenholz JM, Shalit Y, Garin M, et al. Long-term safety and efficacy of reslizumab in patients with eosinophilic asthma. J Allergy Clin Immunol Pract. 2017;5(6):1572–81.e3. https://doi.org/10.1016/j.jaip.2017.08.024.

    Article  Google Scholar 

  109. Virchow JC, Katial R, Brusselle GG, Shalit Y, Garin M, McDonald M, et al. Safety of reslizumab in uncontrolled asthma with eosinophilia: a pooled analysis from 6 trials. J Allergy Clin Immunol Pract. 2020;8(2):540–8 e1. https://doi.org/10.1016/j.jaip.2019.07.038.

    Article  Google Scholar 

  110. Ying S, O'Connor B, Ratoff J, Meng Q, Fang C, Cousins D, et al. Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease. J Immunol. 2008;181(4):2790–8. https://doi.org/10.4049/jimmunol.181.4.2790.

    Article  CAS  Google Scholar 

  111. Ying S, O'Connor B, Ratoff J, Meng Q, Mallett K, Cousins D, et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol. 2005;174(12):8183–90. https://doi.org/10.4049/jimmunol.174.12.8183.

    Article  CAS  Google Scholar 

  112. Torgerson DG, Ampleford EJ, Chiu GY, Gauderman WJ, Gignoux CR, Graves PE, et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. Nat Genet. 2011;43(9):887–92. https://doi.org/10.1038/ng.888.

    Article  CAS  PubMed Central  Google Scholar 

  113. Chauhan A, Singh M, Agarwal A, Paul N. Correlation of TSLP, IL-33, and CD4 + CD25 + FOXP3 + T regulatory (Treg) in pediatric asthma. J Asthma. 2015;52(9):868–72. https://doi.org/10.3109/02770903.2015.1026441.

    Article  CAS  Google Scholar 

  114. Gauvreau GM, O'Byrne PM, Boulet LP, Wang Y, Cockcroft D, Bigler J, et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N Engl J Med. 2014;370(22):2102–10. https://doi.org/10.1056/NEJMoa1402895.

    Article  CAS  Google Scholar 

  115. •• Corren J, Parnes JR, Wang L, Mo M, Roseti SL, Griffiths JM, et al. Tezepelumab in adults with uncontrolled asthma. N Engl J Med. 2017;377(10):936–46. https://doi.org/10.1056/NEJMoa1704064. Pivotal phase 2 study with tezepelumab that suggests in may benefit type 2 high and type 2 low asthma.

    Article  CAS  Google Scholar 

  116. Zeiger RS, Schatz M, Dalal AA, Qian L, Chen W, Ngor EW, et al. Utilization and costs of severe uncontrolled asthma in a managed-care setting. J Allergy Clin Immunol Pract. 2016;4(1):120–9.e3. https://doi.org/10.1016/j.jaip.2015.08.003.

    Article  Google Scholar 

  117. Barsky EE, Giancola LM, Baxi SN, Gaffin JM. A practical approach to severe asthma in children. Ann Am Thorac Soc. 2018;15(4):399–408. https://doi.org/10.1513/AnnalsATS.201708-637FR.

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of Interest

Michael S. Blaiss, MD, has received an honorarium for consulting and speaking for Sanofi/Genzyme and Regeneron. No other authors have any conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatric Allergy and Immunology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tison, K.L., Patrawala, M. & Blaiss, M.S. Monoclonal Antibody Therapy in Childhood Asthma. Curr Allergy Asthma Rep 20, 26 (2020). https://doi.org/10.1007/s11882-020-00919-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-020-00919-3

Keywords

Navigation