Skip to main content

Advertisement

Log in

Emerging Therapeutics for Ocular Surface Disease

  • Rhinitis, Conjunctivitis, and Sinusitis (John J. Oppenheimer & Jonathan Corren, Section Editors)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this article is to review treatment advances in ocular allergy that include the treatment of the various signs and symptoms of the allergic inflammatory response of the ocular surface.

Recent Findings

Recent studies have demonstrated improved pharmacological effect of topical agents with artificial tears and cold compresses; brimonidine, a new ophthalmic decongestant which has demonstrated decreased rebound conjunctivitis; and potential use of contact lens and other novel delivery instruments to increase medication retention time.

Summary

Currently, there have been limited advances in novel ophthalmic treatments. Non-pharmacological interventions have demonstrated in a randomized control study that artificial tears and the use cold compresses alone or in combination with ophthalmic antihistamines can enhance the effectiveness of a traditional pharmacological therapy. The primary advances have been the start of head-to-head studies comparing various agents actively being used in the treatment of ocular allergy. In addition, there has been increasing interest in the development of novel delivery systems to increase residence time of pharmacological agents in the ocular surface such as nanoparticles, microfilms; examining novel pathways of controlling the allergic inflammatory response of the ocular surface such as modulation of cytokines, transcription factors, and immunophilins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of major importance •• Of major importance

  1. Origlieri C, Bielory L. Emerging drugs for conjunctivitis. Expert Opin Emerg Drugs. 2009;14:523–36.

    Article  CAS  PubMed  Google Scholar 

  2. Butrus S, Portela R. Ocular allergy: diagnosis and treatment. Ophthalmol Clin N Am. 2005;18:485–92 v.

    Google Scholar 

  3. Singh K, Axelrod S, Bielory L. The epidemiology of ocular and nasal allergy in the United States, 1988-1994. J Allergy Clin Immunol. 2010;126:778–83 e776.

    Article  PubMed  Google Scholar 

  4. Sacchetti M, Abicca I, Bruscolini A, Cavaliere C, Nebbioso M, Lambiase A. Allergic conjunctivitis: current concepts on pathogenesis and management. J Biol Regul Homeost Agents. 2018;32:49–60.

    CAS  PubMed  Google Scholar 

  5. Bielory L, Meltzer EO, Nichols KK, Melton R, Thomas RK, Bartlett JD. An algorithm for the management of allergic conjunctivitis. Allergy Asthma Proc. 2013;34:408–20.

    Article  PubMed  Google Scholar 

  6. •• Bilkhu PS, Wolffsohn JS, Naroo SA, Robertson L, Kennedy R. Effectiveness of nonpharmacologic treatments for acute seasonal allergic conjunctivitis. Ophthalmology. 2014;121:72–8 Sheds light on effectiveness of cold compresses and lubricant based treatments with or without a topical pharmacological agent.

    Article  PubMed  Google Scholar 

  7. Abelson MB, Paradis A, George MA, Smith LM, Maguire L, Burns R. Effects of Vasocon-A in the allergen challenge model of acute allergic conjunctivitis. Arch Ophthalmol. 1990;108:520–4.

    Article  CAS  PubMed  Google Scholar 

  8. Spector SL, Raizman MB. Conjunctivitis medicamentosa. J Allergy Clin Immunol. 1994;94:134–6.

    Article  CAS  PubMed  Google Scholar 

  9. •• McLaurin E, Cavet ME, Gomes PJ, Ciolino JB. Brimonidine ophthalmic solution 0.025% for reduction of ocular redness: a randomized clinical trial. Optom Vis Sci. 2018;95:264–71 A potential ophthalmic decongestant showing minimal rebound phenomena of the ocular surface when used over 4 weeks.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Torkildsen GL, Sanfilippo CM, DeCory HH, Gomes PJ. Evaluation of efficacy and safety of brimonidine tartrate ophthalmic solution, 0.025% for treatment of ocular redness. Curr Eye Res. 2018;43:43–51.

    Article  CAS  PubMed  Google Scholar 

  11. Rathi VM, Taneja M, Dumpati S, Mandathara PS, Sangwan VS. Role of scleral contact lenses in management of coexisting keratoconus and Stevens-Johnson syndrome. Cornea. 2017;36:1267–9.

    PubMed  Google Scholar 

  12. Lemp MA, Bielory L. Contact lenses and associated anterior segment disorders: dry eye disease, blepharitis, and allergy. Immunol Allergy Clin N Am. 2008;28:105–17 vi-vii.

    Article  Google Scholar 

  13. •• Gause S, Hsu KH, Shafor C, Dixon P, Powell KC, Chauhan A. Mechanistic modeling of ophthalmic drug delivery to the anterior chamber by eye drops and contact lenses. Adv Colloid Interf Sci. 2016;233:139–54 Novel drug delivery system.

    Article  CAS  Google Scholar 

  14. Gonzalez-Chomon C, Silva M, Concheiro A, Alvarez-Lorenzo C. Biomimetic contact lenses eluting olopatadine for allergic conjunctivitis. Acta Biomater. 2016;41:302–11.

    Article  CAS  PubMed  Google Scholar 

  15. Soluri A, Hui A, Jones L. Delivery of ketotifen fumarate by commercial contact lens materials. Optom Vis Sci. 2012;89:1140–9.

    Article  PubMed  Google Scholar 

  16. Phan CM, Weber S, Mueller J, Yee A, Jones L. A rapid extraction method to quantify drug uptake in contact lenses. Transl Vis Sci Technol. 2018;7:11.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fahy GT, Easty DL, Collum LM, Benedict-Smith A, Hillery M, Parsons DG. Randomised double-masked trial of lodoxamide and sodium cromoglycate in allergic eye disease. A multicentre study. Eur J Ophthalmol. 1992;2:144–9.

    Article  CAS  PubMed  Google Scholar 

  18. Avunduk AM, Avunduk MC, Kapicioglu Z, Akyol N, Tavli L. Mechanisms and comparison of anti-allergic efficacy of topical lodoxamide and cromolyn sodium treatment in vernal keratoconjunctivitis. Ophthalmology. 2000;107:1333–7.

    Article  CAS  PubMed  Google Scholar 

  19. Katelaris CH, Ciprandi G, Missotten L, Turner FD, Bertin D, Berdeaux G, et al. A comparison of the efficacy and tolerability of olopatadine hydrochloride 0.1% ophthalmic solution and cromolyn sodium 2% ophthalmic solution in seasonal allergic conjunctivitis. Clin Ther. 2002;24:1561–75.

    Article  CAS  PubMed  Google Scholar 

  20. Patel D, Sarala N, Datti NP. Topical olopatadine hydrochloride versus ketotifen fumarate for allergic conjunctivitis. J Ophthalmic Vis Res. 2018;13:119–23.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Aguilar AJ. Comparative study of clinical efficacy and tolerance in seasonal allergic conjunctivitis management with 0.1% olopatadine hydrochloride versus 0.05% ketotifen fumarate. Acta Ophthalmol Scand Suppl. 2000:52–5.

  22. Avunduk AM, Tekelioglu Y, Turk A, Akyol N. Comparison of the effects of ketotifen fumarate 0.025% and olopatadine HCl 0.1% ophthalmic solutions in seasonal allergic conjunctivities: a 30-day, randomized, double-masked, artificial tear substitute-controlled trial. Clin Ther. 2005;27:1392–402.

    Article  CAS  PubMed  Google Scholar 

  23. Lanier BQ, Finegold I, D'Arienzo P, Granet D, Epstein AB, Ledgerwood GL. Clinical efficacy of olopatadine vs epinastine ophthalmic solution in the conjunctival allergen challenge model. Curr Med Res Opin. 2004;20:1227–33.

    Article  CAS  PubMed  Google Scholar 

  24. Mah FS, Rosenwasser LJ, Townsend WD, Greiner JV, Bensch G. Efficacy and comfort of olopatadine 0.2% versus epinastine 0.05% ophthalmic solution for treating itching and redness induced by conjunctival allergen challenge. Curr Med Res Opin. 2007;23:1445–52.

    Article  CAS  PubMed  Google Scholar 

  25. Mizoguchi T, Ozaki M, Ogino N. Efficacy of 0.05% epinastine and 0.1% olopatadine for allergic conjunctivitis as seasonal and preseasonal treatment. Clin Ophthalmol. 2017;11:1747–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Berdy GJ, Stoppel JO, Epstein AB. Comparison of the clinical efficacy and tolerability of olopatadine hydrochloride 0.1% ophthalmic solution and loteprednol etabonate 0.2% ophthalmic suspension in the conjunctival allergen challenge model. Clin Ther. 2002;24:918–29.

    Article  CAS  PubMed  Google Scholar 

  27. Gong L, Sun X, Qu J, Wang L, Zhang M, Zhang H, et al. Loteprednol etabonate suspension 0.2% administered QID compared with olopatadine solution 0.1% administered BID in the treatment of seasonal allergic conjunctivitis: a multicenter, randomized, investigator-masked, parallel group study in Chinese patients. Clin Ther. 2012;34:1259–72 e1251.

    Article  CAS  PubMed  Google Scholar 

  28. Celik T, Turkoglu EB. Comparative evaluation of olopatadine 0.01% combined fluorometholone 0.1% treatment versus olopatadine 0.01% combined ketorolac 0.4% treatment in patients with acute seasonal allergic conjunctivitis. Curr Eye Res. 2014;39:42–6.

    Article  CAS  PubMed  Google Scholar 

  29. Yaylali V, Demirlenk I, Tatlipinar S, Ozbay D, Esme A, Yildirim C, et al. Comparative study of 0.1% olopatadine hydrochloride and 0.5% ketorolac tromethamine in the treatment of seasonal allergic conjunctivitis. Acta Ophthalmol Scand. 2003;81:378–82.

    Article  CAS  PubMed  Google Scholar 

  30. McLaurin EB, Marsico NP, Ackerman SL, Ciolino JB, Williams JM, Villanueva L, et al. Ocular itch relief with alcaftadine 0.25% versus olopatadine 0.2% in allergic conjunctivitis: pooled analysis of two multicenter randomized clinical trials. Adv Ther. 2014;31:1059–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Borazan M, Karalezli A, Akova YA, Akman A, Kiyici H, Erbek SS. Efficacy of olopatadine HCI 0.1%, ketotifen fumarate 0.025%, epinastine HCI 0.05%, emedastine 0.05% and fluorometholone acetate 0.1% ophthalmic solutions for seasonal allergic conjunctivitis: a placebo-controlled environmental trial. Acta Ophthalmol. 2009;87:549–54.

    Article  CAS  PubMed  Google Scholar 

  32. McCabe CF, McCabe SE. Comparative efficacy of bepotastine besilate 1.5% ophthalmic solution versus olopatadine hydrochloride 0.2% ophthalmic solution evaluated by patient preference. Clin Ophthalmol. 2012;6:1731–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Secchi A, Leonardi A, Discepola M, Deschenes J, Abelson MB. An efficacy and tolerance comparison of emedastine difumarate 0.05% and levocabastine hydrochloride 0.05%: reducing chemosis and eyelid swelling in subjects with seasonal allergic conjunctivitis. Emadine Study Group. Acta Ophthalmol Scand Suppl. 2000:48–51.

  34. Secchi A, Ciprandi G, Leonardi A, Deschenes J, Abelson MB. Safety and efficacy comparison of emedastine 0.05% ophthalmic solution compared to levocabastine 0.05% ophthalmic suspension in pediatric subjects with allergic conjunctivitis. Emadine Study Group. Acta Ophthalmol Scand Suppl. 2000:42–7.

  35. McLaurin E, Narvekar A, Gomes P, Adewale A, Torkildsen G. Phase 3 randomized double-masked study of efficacy and safety of once-daily 0.77% olopatadine hydrochloride ophthalmic solution in subjects with allergic conjunctivitis using the conjunctival allergen challenge model. Cornea. 2015;34:1245–51.

    Article  PubMed  Google Scholar 

  36. Wan XC, Dimov V. Pharmacokinetic evaluation of topical calcineurin inhibitors for treatment of allergic conjunctivitis. Expert Opin Drug Metab Toxicol. 2014;10:543–9.

    Article  CAS  PubMed  Google Scholar 

  37. Liendo VL, Vola ME, Barreiro TP, Wakamatsu TH, Gomes JAP, Santos MSD. Topical tacrolimus for the treatment of severe allergic keratoconjunctivitis in children. Arq Bras Oftalmol. 2017;80:211–4.

    Article  PubMed  Google Scholar 

  38. Zulim L, Nai GA, Giuffrida R, Pereira CSG, Benguella H, Cruz AG, et al. Comparison of the efficacy of 0.03% tacrolimus eye drops diluted in olive oil and linseed oil for the treatment of keratoconjunctivitis sicca in dogs. Arq Bras Oftalmol. 2018;81:293–301.

    Article  PubMed  Google Scholar 

  39. Liu YC, Ng XW, Teo EPW, Ang HP, Lwin NC, Chan NSW, et al. A biodegradable, sustained-released, tacrolimus microfilm drug delivery system for the management of allergic conjunctivitis in a mouse model. Invest Ophthalmol Vis Sci. 2018;59:675–84.

    Article  CAS  PubMed  Google Scholar 

  40. Yoon CH, Kim MK, Oh JY. Topical tacrolimus 0.03% for maintenance therapy in steroid-dependent, recurrent phlyctenular keratoconjunctivitis. Cornea. 2018;37:168–71.

    Article  PubMed  Google Scholar 

  41. Wan Q, Tang J, Han Y, Wang D, Ye H. Therapeutic effect of 0.1% tacrolimus eye drops in the tarsal form of vernal keratoconjunctivitis. Ophthalmic Res. 2018;59:126–34.

    Article  CAS  PubMed  Google Scholar 

  42. Muller EG, Santos MSD, Freitas D, Gomes JAP, Belfort R Jr. Tacrolimus eye drops as monotherapy for vernal keratoconjunctivitis: a randomized controlled trial. Arq Bras Oftalmol. 2017;80:154–8.

    Article  PubMed  Google Scholar 

  43. Zanjani H, Aminifard MN, Ghafourian A, Pourazizi M, Maleki A, Arish M, et al. Comparative evaluation of tacrolimus versus interferon alpha-2b eye drops in the treatment of vernal keratoconjunctivitis: a randomized, double-masked study. Cornea. 2017;36:675–8.

    Article  PubMed  Google Scholar 

  44. Miyazaki D, Fukushima A, Ohashi Y, Ebihara N, Uchio E, Okamoto S, et al. Steroid-sparing effect of 0.1% tacrolimus eye drop for treatment of shield ulcer and corneal epitheliopathy in refractory allergic ocular diseases. Ophthalmology. 2017;124:287–94.

    Article  PubMed  Google Scholar 

  45. Kato M, Hagiwara Y, Oda T, Imamura-Takai M, Aono H, Nakamura M. Beneficial pharmacological effects of selective glucocorticoid receptor agonist in external eye diseases. J Ocul Pharmacol Ther. 2011;27:353–60.

    Article  CAS  PubMed  Google Scholar 

  46. Ripa L, Edman K, Dearman M, Edenro G, Hendrickx R, Ullah V, et al. Discovery of a novel oral glucocorticoid receptor modulator (AZD9567) with improved side effect profile. J Med Chem. 2018;61:1785–99.

    Article  CAS  PubMed  Google Scholar 

  47. Baiula M, Bedini A, Baldi J, Cavet ME, Govoni P, Spampinato S. Mapracorat, a selective glucocorticoid receptor agonist, causes apoptosis of eosinophils infiltrating the conjunctiva in late-phase experimental ocular allergy. Drug Des Devel Ther. 2014;8:745–57.

    PubMed  PubMed Central  Google Scholar 

  48. Shafiee A, Bucolo C, Budzynski E, Ward KW, Lopez FJ. In vivo ocular efficacy profile of mapracorat, a novel selective glucocorticoid receptor agonist, in rabbit models of ocular disease. Invest Ophthalmol Vis Sci. 2011;52:1422–30.

    Article  CAS  PubMed  Google Scholar 

  49. Baiula M, Spampinato S. Mapracorat, a novel non-steroidal selective glucocorticoid receptor agonist for the treatment of allergic conjunctivitis. Inflamm Allergy Drug Targets. 2014;13:289–98.

    Article  CAS  PubMed  Google Scholar 

  50. de Klerk TA, Sharma V, Arkwright PD, Biswas S. Severe vernal keratoconjunctivitis successfully treated with subcutaneous omalizumab. J AAPOS. 2013;17:305–6.

    Article  PubMed  Google Scholar 

  51. Sanchez J, Cardona R. Omalizumab. An option in vernal keratoconjunctivitis? Allergol Immunopathol (Madr). 2012;40:319–20.

    Article  CAS  Google Scholar 

  52. Taille C, Doan S, Neukirch C, Aubier M. Omalizumab for severe atopic keratoconjunctivitis. BMJ Case Rep. 2010;2010.

  53. Simpson R, Lee JK. Omalizumab as single-dose therapy for vernal keratoconjunctivitis. Ann Allergy Asthma Immunol. 2018.

  54. Santamaria L, Sanchez J. Long-term efficacy of omalizumab in patients with conventional treatment-resistant vernal keratoconjunctivitis. Rev Alerg Mex. 2018;65:192–6.

    PubMed  Google Scholar 

  55. Occasi F, Duse M, Nebbioso M, De Castro G, Di Fraia M, Capata G, et al. Vernal keratoconjunctivitis treated with omalizumab: a case series. Pediatr Allergy Immunol. 2017;28:503–5.

    Article  PubMed  Google Scholar 

  56. Heffler E, Picardi G, Liuzzo MT, Pistorio MP, Crimi N. Omalizumab treatment of vernal keratoconjunctivitis. JAMA Ophthalmol. 2016;134:461–3.

    Article  PubMed  Google Scholar 

  57. Bielory BP, Shah SP, O'Brien TP, Perez VL, Bielory L. Emerging therapeutics for ocular surface disease. Curr Opin Allergy Clin Immunol. 2016;16:477–86.

    Article  PubMed  Google Scholar 

  58. Soltani S, Zakeri-Milani P, Barzegar-Jalali M, Jelvehgari M. Comparison of different nanosuspensions as potential ophthalmic delivery systems for ketotifen fumarate. Adv Pharm Bull. 2016;6:345–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. •• Soltani S, Zakeri-Milani P, Barzegar-Jalali M, Jelvehgari M. Design of eudragit RL nanoparticles by nanoemulsion method as carriers for ophthalmic drug delivery of ketotifen fumarate. Iran J Basic Med Sci. 2016;19:550–60 Novel drug formulation.

    PubMed  PubMed Central  Google Scholar 

  60. Pham DL, Lim KM, Joo KM, Park HS, Leung DYM, Ye YM. Increased cis-to-trans urocanic acid ratio in the skin of chronic spontaneous urticaria patients. Sci Rep. 2017;7:1318.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jauhonen HM, Laihia J, Oksala O, Viiri J, Sironen R, Alajuuma P, et al. Topical cis-urocanic acid prevents ocular surface irritation in both IgE—independent and—mediated rat model. Graefes Arch Clin Exp Ophthalmol. 2017;255:2357–62.

    Article  PubMed  Google Scholar 

  62. Jauhonen HM, Kari E, Pylkkanen L, Poutanen J, Laihia J, Kaarniranta K, et al. A randomized phase I clinical study of cis-urocanic acid eye drops in healthy adult subjects. Acta Ophthalmol. 2015;93:368–76.

    Article  CAS  PubMed  Google Scholar 

  63. • Dattoli SD, Baiula M, De Marco R, Bedini A, Anselmi M, Gentilucci L, et al. DS-70, a novel and potent alpha4 integrin antagonist, is an effective treatment for experimental allergic conjunctivitis in guinea pigs. Br J Pharmacol. 2018;175:3891–910 Novel focus on conjunctival surface adhesion molecules to decrease allergic inflammation of the ocular surface.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Guzman M, Sabbione F, Gabelloni ML, Vanzulli S, Trevani AS, Giordano MN, et al. Restoring conjunctival tolerance by topical nuclear factor-kappaB inhibitors reduces preservative-facilitated allergic conjunctivitis in mice. Invest Ophthalmol Vis Sci. 2014;55:6116–26.

    Article  CAS  PubMed  Google Scholar 

  65. Lee HS, Kwon JY, Joo CK. Topical administration of beta-1,3-glucan to modulate allergic conjunctivitis in a murine model. Invest Ophthalmol Vis Sci. 2016;57:1352–60.

    Article  CAS  PubMed  Google Scholar 

  66. Kwon JY, Lee HS, Joo CK. TRPV1 antagonist suppresses allergic conjunctivitis in a murine model. Ocul Immunol Inflamm. 2018;26:440–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest pertaining to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Rhinitis, Conjunctivitis, and Sinusitis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bielory, L., Schoenberg, D. Emerging Therapeutics for Ocular Surface Disease. Curr Allergy Asthma Rep 19, 16 (2019). https://doi.org/10.1007/s11882-019-0844-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-019-0844-8

Keywords

Navigation