Skip to main content

Severe Atopic Dermatitis in Children

Abstract

Purpose of Review

Severe atopic dermatitis (AD) in childhood leads to significant morbidity including psychosocial problems and infectious complications. There are only a few approved treatment options for these patients. These include topical corticosteroids and tacrolimus ointment, which are associated with potential side effects.

Recent Findings

In order to find better and safer treatments, further understanding of AD mechanisms is needed. Primary skin barrier defects play an important role in the pathogenesis of AD. In addition, the suppression of skin barrier functions by Th2 inflammation also plays an important role in the persistence and recurrence of AD. Cytokines in the Th2 pathway, which includes IL-4, IL-13, TSLP, IL-25, IL-31, and IL-33, are potential therapeutic targets in AD. Other potential targets of AD are Janus kinase, phospholipase A2, aryl hydrocarbon receptor, and skin microbiota.

Summary

A better understanding of the pathogenesis of AD will provide future direction for treatment.

This is a preview of subscription content, access via your institution.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Shaw TE, Currie GP, Koudelka CW, Simpson EL. Eczema prevalence in the United States: data from the 2003 National Survey of Children’s Health. J Invest Dermatol. 2011;131(1):67–73.

    Article  PubMed  CAS  Google Scholar 

  2. Mancini AJ, Kaulback K, Chamlin SL. The socioeconomic impact of atopic dermatitis in the United States: a systematic review. Pediatr Dermatol. 2008;25(1):1–6.

    Article  PubMed  Google Scholar 

  3. Sun D, Ong PY. Infectious complications in atopic dermatitis. Immunol Allergy Clin N Am. 2017;37:75–93.

    Article  CAS  Google Scholar 

  4. McLean WH. Filaggrin failure—from ichthyosis vulgaris to atopic eczema and beyond. Br J Dermatol. 2016;175 Suppl 2:4–7.

    Article  PubMed  CAS  Google Scholar 

  5. Morar N, Cookson WO, Harper JI, Moffatt MF. Filaggrin mutations in children with severe atopic dermatitis. J Invest Dermatol. 2007;127:1667–72.

    Article  PubMed  CAS  Google Scholar 

  6. •• Berdyshev E, Goleva E, Bronova I, Dyjack N, Rios C, Jung J, et al. Lipid abnormalities in atopic skin are driven by type 2 cytokines. JCI Insight. 2018;3(4). https://doi.org/10.1172/jci.insight.98006. Th2 cytokines have been shown to suppress filaggrin, which is an important skin barrier protein. This paper shows that Th2 cytokines may also suppress lipid barrier. The suppression of skin barrier function by Th2 cytokines plays an important role in chronic AD.

  7. Tokumasu R, Yamaga K, Yamazaki Y, Murota H, Suzuki K, Tamura A, et al. Dose-dependent role of claudin-1 in vivo in orchestrating features of atopic dermatitis. Proc Natl Acad Sci U S A. 2016;113(28):E4061–8.

  8. Wallmeyer L, Dietert K, Sochorová M, Gruber AD, Kleuser B, Vávrová K, et al. TSLP is a direct trigger for T cell migration in filaggrin-deficient skin equivalents. Sci Rep. 2017 Apr 4;7(1):774.

  9. •• Kim BS, Siracusa MC, Saenz SA, Noti M, Monticelli LA, Sonnenberg GF, et al. TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci Transl Med. 2013;5:170ra16. The first study that showed increased group 2 innate lymphoid cells in human AD. These cells are important in the pathogenesis of AD.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Brüggen MC, Bauer WM, Reininger B, Clim E, Captarencu C, Steiner GE, et al. In situ mapping of innate lymphoid cells in human skin: evidence for remarkable differences between normal and inflamed skin. J Invest Dermatol. 2016;136(12):2396–405.

  11. Salimi M, Barlow JL, Saunders SP, Xue L, Gutowska-Owsiak D, Wang X, et al. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med. 2013;210(13):2939–50.

  12. Lou H, Lu J, Choi EB, Oh MH, Jeong M, Barmettler S, et al. Expression of IL-22 in the skin causes Th2-biased immunity, epidermal barrier dysfunction, and pruritus via stimulating epithelial Th2 cytokines and the GRP pathway. J Immunol. 2017;198(7):2543–55.

  13. • Meng J, Moriyama M, Feld M, Buddenkotte J, Buhl T, Szöllösi A, et al. New mechanism underlying IL-31-induced atopic dermatitis. J Allergy Clin Immunol. 2018; Patients with chronic AD suffer from central itch that results in the scratch-itch cycle. This paper provides novel mechanisms on how IL-31 may increase brain-derived natriuretic peptide in the pathogenesis of central itch.

  14. McAleer MA, Pohler E, Smith FJ, Wilson NJ, Cole C, MacGowan S, et al. Severe dermatitis, multiple allergies, and metabolic wasting syndrome caused by a novel mutation in the N-terminal plakin domain of desmoplakin. J Allergy Clin Immunol. 2015;136(5):1268–76. https://doi.org/10.1016/j.jaci.2015.05.002.

  15. Ma CA, Stinson JR, Zhang Y, Abbott JK, Weinreich MA, Hauk PJ, et al. Germline hypomorphic CARD11 mutations in severe atopic disease. Nat Genet. 2017;49(8):1192–201.

  16. Garg N, Silverberg JI. Epidemiology of childhood atopic dermatitis. Clin Dermatol. 2015;33(3):281–8.

    Article  PubMed  Google Scholar 

  17. Chalmers JR, Simpson E, Apfelbacher CJ, Thomas KS, von Kobyletzki L, Schmitt J, et al. Report from the fourth international consensus meeting to harmonize core outcome measures for atopic eczema/dermatitis clinical trials (HOME initiative). Br J Dermatol. 2016;175(1):69–79.

  18. Charman CR, Venn AJ, Williams HC. The Patient-Oriented Eczema Measure: development and initial validation of a new tool for measuring atopic eczema severity from the patients’ perspective. Arch Dermatol. 2004;140:1513–9.

    Article  PubMed  Google Scholar 

  19. Thijs JL, Drylewicz J, Fiechter R, Strickland I, Sleeman MA, Herath A, et al. EASI p-EASI: utilizing a combination of serum biomarkers offers an objective measurement tool for disease severity in atopic dermatitis patients. J Allergy Clin Immunol. 2017;140(6):1703–5.

  20. Nagao M, Inagaki S, Kawano T, Azuma Y, Nomura N, Noguchi Y, et al. SCCA2 is a reliable biomarker for evaluating pediatric atopic dermatitis. J Allergy Clin Immunol. 2018;S0091-6749(18)30200–8. https://doi.org/10.1016/j.jaci.2018.01.021.

  21. • Werfel T, Heratizadeh A, Niebuhr M, Kapp A, Roesner LM, Karch A, et al. Exacerbation of atopic dermatitis on grass pollen exposure in an environment challenge chamber. J Allergy Clin Immunol. 2015;136:96–103. One of the first controlled studies that showed the importance of aeroallergen in the trigger of AD.

    Article  PubMed  CAS  Google Scholar 

  22. Nakatsuji T, Chen TH, Two AM, Chun KA, Narala S, Geha RS, et al. Staphylococcus aureus exploits epidermal barrier defects in atopic dermatitis to trigger cytokine expression. J Invest Dermatol. 2016;136(11):2192–200.

  23. Traidl S, Kienlin P, Begemann G, Jing L, Koelle DM, Werfel T, et al. Patients with atopic dermatitis and history of eczema herpeticum elicit herpes simplex virus-specific type 2 immune responses. J Allergy Clin Immunol. 2018;141(3):1144–1147.e5.

  24. Huang JT, Abrams M, Tlougan B, Rademaker A, Paller AS. Treatment of Staphylococcus aureus colonization in atopic dermatitis decreases disease severity. Pediatrics. 2009;123(5):e808-e814.

    Article  Google Scholar 

  25. Chopra R, Vakharia PP, Sacotte R, Silverberg JI. Efficacy of bleach baths in reducing severity of atopic dermatitis: a systematic review and meta-analysis. Ann Allergy Asthma Immunol. 2017 Nov;119(5):435–40.

    Article  PubMed  Google Scholar 

  26. Dhossche J, Simpson E, Hajar T. Topical corticosteroid withdrawal in a pediatric patient. JAAD Case Rep. 2017;3(5):420–1.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Long CC, Mills CM, Finlay AY. A practical guide to topical therapy in children. Br J Dermatol. 1998;138(2):293–6.

    Article  PubMed  CAS  Google Scholar 

  28. Legendre L, Barnetche T, Mazereeuw-Hautier J, Meyer N, Murrell D, Paul C. Risk of lymphoma in patients with atopic dermatitis and the role of topical treatment: a systematic review and meta-analysis. J Am Acad Dermatol. 2015;72(6):992–1002.

  29. Castellsague J, Kuiper JG, Pottegård A, Anveden Berglind I, Dedman D, Gutierrez L, et al. A cohort study on the risk of lymphoma and skin cancer in users of topical tacrolimus, pimecrolimus, and corticosteroids (Joint European Longitudinal Lymphoma and Skin Cancer Evaluation - JOELLE study). Clin Epidemiol. 2018;10:299–310.

  30. Nicol NH, Boguniewicz M. Wet wrap therapy in moderate to severe atopic dermatitis. Immunol Allergy Clin N Am. 2017;37(1):123–39.

    Article  Google Scholar 

  31. Notaro ER, Sidbury R. Systemic agents for severe atopic dermatitis in children. Paediatr Drugs. 2015;17(6):449–57.

    Article  PubMed  Google Scholar 

  32. Paller AS, Tom WL, Lebwohl MG, Blumenthal RL, Boguniewicz M, Call RS, et al. Efficacy and safety of crisaborole ointment, a novel, nonsteroidal phosphodiesterase 4 (PDE4) inhibitor for the topical treatment of atopic dermatitis (AD) in children and adults. J Am Acad Dermatol. 2016 Sep;75(3):494–503.e6.

  33. Beck LA, Thaçi D, Hamilton JD, Graham NM, Bieber T, Rocklin R, et al. Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. N Engl J Med. 2014;371(2):130–9.

  34. Simpson EL, Bieber T, Guttman-Yassky E, Beck LA, Blauvelt A, Cork MJ, et al. Two phase 3 trials of dupilumab versus placebo in atopic dermatitis. N Engl J Med. 2016;375(24):2335–48.

  35. Blauvelt A, de Bruin-Weller M, Gooderham M, Cather JC, Weisman J, Pariser D, et al. Long-term management of moderate-to-severe atopic dermatitis with dupilumab and concomitant topical corticosteroids (LIBERTY AD CHRONOS): a 1-year, randomised, double-blinded, placebo-controlled, phase 3 trial. Lancet. 2017;389(10086):2287–303.

  36. Cork MJ. Pharmacokinetics, Safety, and Efficacy of Dupilumab in a Pediatric Population With Moderate-to-Severe Atopic Dermatitis: Results From an Open-Label Phase 2a Trial. American Academy of Dermatology. 2017; Abstract 5279.

  37. Wang D, Beck LA. Immunologic targets in atopic dermatitis and emerging therapies: an update. Am J Clin Dermatol. 2016;17(5):425–43.

    Article  PubMed  Google Scholar 

  38. Ruzicka T, Hanifin JM, Furue M, Pulka G, Mlynarczyk I, Wollenberg A, et al. Anti-interleukin-31 receptor A antibody for atopic dermatitis. N Engl J Med. 2017;376(9):826–35.

  39. • Oetjen LK, Mack MR, Feng J, Whelan TM, Niu H, Guo CJ, et al. Sensory neurons co-opt classical immune signaling pathways to mediate chronic itch. Cell. 2017;171(1):217–228.e13. Th2 cytokines mediate itch via JAK1 pathways. This provides a potential target for JAK inhibitor as an anti-itch treatment.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. • Klose CSN, Mahlakõiv T, Moeller JB, Rankin LC, Flamar AL, Kabata H, et al. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature. 2017;549(7671):282–6. Neuromedin U is peptide that may link inflammation and itch in AD. This provides a potential therapeutic target in the chronic itch and pain of AD.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Mollanazar NK, Smith PK, Yosipovitch G. Mediators of chronic pruritus in atopic dermatitis: getting the itch out? Clin Rev Allergy Immunol. 2016;51(3):263–92.

    Article  PubMed  CAS  Google Scholar 

  42. • Hardman CS, Chen YL, Salimi M, Jarrett R, Johnson D, Järvinen VJ, et al. CD1a presentation of endogenous antigens by group 2 innate lymphoid cells. Sci Immunol. 2017;2(18) https://doi.org/10.1126/sciimmunol.aan5918. Lipid antigens generated by phospholipase may be presented by group 2 innate lymphoid cells. This presents a potential use of phospholipase inhibitors in the treatment of AD.

  43. • Bissonnette R, Vasist LS, Bullman JN, Collingwood T, Chen G, Maeda-Chubachi T. Systemic pharmacokinetics, safety, and preliminary efficacy of topical AhR agonist tapinarof: results of a phase 1 study. Clin Pharmacol Drug Dev. 2018; https://doi.org/10.1002/cpdd.439. Xenobiotics or pollutants may explain the increase in prevalence of AD in recent years. This paper is a proof of concept that aryl hydrocarborn receptor, a type of xenobiotic receptor, agonists (or antagonists) may be used to prevent or treat AD.

  44. • Kobayashi T, Glatz M, Horiuchi K, Kawasaki H, Akiyama H, Kaplan DH, et al. Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis. Immunity. 2015;42(4):756–66. A basic study that shows that S. aureus is a cause of AD.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Byrd AL, Deming C, Cassidy SKB, Harrison OJ, Ng WI, Conlan S, et al. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci Transl Med. 2017;9(397):eaal4651.

  46. Kennedy EA, Connolly J, Hourihane JO, Fallon PG, McLean WHI, Murray D, et al. Skin microbiome before development of atopic dermatitis: early colonization with commensal staphylococci at 2 months is associated with a lower risk of atopic dermatitis at 1 year. J Allergy Clin Immunol. 2017;139(1):166–72.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Myles IA, Williams KW, Reckhow JD, Jammeh ML, Pincus NB, Sastalla I, et al. Transplantation of human skin microbiota in models of atopic dermatitis. JCI Insight. 2016;1(10) https://doi.org/10.1172/jci.insight.86955.

  48. Chng KR, Tay AS, Li C, Ng AH, Wang J, Suri BK, et al. Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare. Nat Microbiol. 2016;1(9):16106.

  49. • Nakatsuji T, Chen TH, Narala S, Chun KA, Two AM, Yun T, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med. 2017;9(378) https://doi.org/10.1126/scitranslmed.aah4680. The production of antimicrobial peptides against S. aureus underlies the mechanisms how coagulase-negative staphylococci may be useful for the treatment or prevention of AD.

  50. • Rosignoli C, Thibaut de Ménonville S, Orfila D, Béal M, Bertino B, Aubert J, et al. A topical treatment containing heat-treated Lactobacillus johnsonii NCC 533 reduces https://doi.org/10.1111/exd.13504. Staphylococcus aureus adhesion and induces antimicrobial peptide expression in an in vitro reconstructed human epidermis model. Exp Dermatol. 2018; The potential of using microbiome in upregulating endogenous antimicrobial peptide in AD. This has implication in the prevention of infection in AD.

  51. Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med. 2002;347(15):1151–60.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peck Y. Ong.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pediatric Allergy and Immunology

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, E., Ong, P.Y. Severe Atopic Dermatitis in Children. Curr Allergy Asthma Rep 18, 35 (2018). https://doi.org/10.1007/s11882-018-0788-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-018-0788-4

Keywords

  • Eczema
  • Microbiome
  • Pediatric
  • Pathogenesis
  • S. aureus
  • Therapy