Mast Cell Interactions and Crosstalk in Regulating Allergic Inflammation

  • Tania E. Velez
  • Paul J. Bryce
  • Kathryn E. Hulse
Basic and Applied Science (I Lewkowich, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Basic and Applied Science


Purpose of Review

This review summarizes recent findings on mast cell biology with a focus on IgE-independent roles of mast cells in regulating allergic responses.

Recent Findings

Recent studies have described novel mast cell-derived molecules, both secreted and membrane-bound, that facilitate cross-talk with a variety of immune effector cells to mediate type 2 inflammatory responses.


Mast cells are complex and dynamic cells that are persistent in allergy and are capable of providing signals that lead to the initiation and persistence of allergic mechanisms.


Mast cells Allergy IgE B cells T cells Histamine 



The authors would like to thank Ms. Jacqueline Schaffer for her artistic work included in this review.


NIH Grant: R01 AI076456.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    da SIlva EZ, Jamur MC, Oliver C. Mast cell function: a new vision of an old cell. J Histochem Cytochem. 2014;62:698–738.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wernersson S, Pejler G. Mast cell secretory granules- armed for battle. Nat Rev Immunol. 2014;14(7):478–94.CrossRefPubMedGoogle Scholar
  3. 3.
    Wisniewski J, Agrawal R, Woodfolk JA. Mechanism of tolerance induction in allergic disease: integrating current and emerging concepts. Clin Exp Allergy. 2013;137:984–97.Google Scholar
  4. 4.
    van Ree R, Hummelshoj L., Plantinga, M., Poulsen, L.K., Swindle, E.: Allergic sensitization: host-immune factors. Clin Transl Allergy. 2014, 4.Google Scholar
  5. 5.
    Novak N, Allam JP, Bieber T. Allergic hyperreactvity to microbial components: a trigger facotr of “intrinsic” atopic dermatitis? J Allergy Clin Immunol. 2003;112:215–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Bieber T. Atopic dermatitis. N Engl J Med. 2008;358:1483–94.CrossRefPubMedGoogle Scholar
  7. 7.
    McAlpine SM, Enoksson M, Lunderius-Andersson C, Nilsson G. The effect of bacterial, viral and fungal infection on mast cell reactivity in the allergic setting. J Innate Immunol. 2011;3:120–30.CrossRefGoogle Scholar
  8. 8.
    Nakamura Y, Oscherwitz J, Cease KB, Chan SM, Munoz-Planillo R, Hasegawa M, et al. Staphylococcus delta-toxin induces allergic skin disease by activating mast cells. Nature. 2013;503:397–401.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Urb M, Pouliot P, Gravelat FN, Olivier M, Sheppard DC. Aspergillus fumigatus induces immunoglobulin E-independent mast cell degranulation. J Infect Dis. 2009;200:464–72.CrossRefPubMedGoogle Scholar
  10. 10.
    Ong PY, Leung DYM. Bacterial and viral infections in atopic dermatitis—a comprehensive review. Clin Rev Allergy Immunol. 2016;51:329–37.CrossRefPubMedGoogle Scholar
  11. 11.
    Rocha-de-Souza CM, Berent-Maoz B, Mankuta D, Moses AE, Levi-Schaffer F. Human mast cell activation by Staphylococcus aureus: interleukin-8 and tumor necrosis factor alpha release and the role of toll-like receptor 2 and CD48 molecules. Infect Immun. 2008;76:4489–97.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chaudhary N, Marr KA. Impact of aspergillus fumigatus in allergic airway diseases. Clin Transl Allergy. 2011;1:4.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Barbosa-Lorenzi VC, Peyda S, Scheynius A, Nilsson G, Lunderius-Andersson C. Curdlan induces selective mast cell degranulation without concomitant release of LTC4, IL-6 or CCL2. Immunobiology. 2017;222:647–50.CrossRefPubMedGoogle Scholar
  14. 14.
    Simon T, Laszlo V, Falus A. Impact of histamine on dendritic cell functions. Cell Biol Int. 2011;35:997–1000.CrossRefPubMedGoogle Scholar
  15. 15.
    Fehrenbach K, Port F, Grochowy G, Kalis C, Bessler W, Galanos C, et al. Stimulation of mast cells via FceRI and TLR2: the type of ligand determines the outcome. Mol Immunol. 2007;44:2087–94.CrossRefPubMedGoogle Scholar
  16. 16.
    Kasakura K, Takahashi K, Aizawa T, Hosono A, Kaminogawa S. A TLR2 ligand suppresses allergic inflammatory reactions by acting directly on mast cells. Int Arch Allergy Immunol. 2009;150:359–69.CrossRefPubMedGoogle Scholar
  17. 17.
    Suurmond J, Dorjee AL, Knol EF, Huizinga TWJ, Toe REM. Differential TLR-induced cytokine production by human mast cells is amplified by FcɛRI triggering. Clin Exp Allergy. 2015;45:788–96.CrossRefPubMedGoogle Scholar
  18. 18.
    Netea MG, Joosten LA., Latz, E., Mills, K.H., Natoli, G., Stunnenber, H.G., O’Neill, L.A., Xavier, R.J: Trained immunity: a program of innate immune memory in health and disease. Science. 2016;352.Google Scholar
  19. 19.
    Saluja R, Delin I., Nilsson, G.P., Adner, M.: FceR1-mediated mast cell reactivity is amplified through prolonged toll-like receptor-ligand treatment. PLoS One. 2012;7.Google Scholar
  20. 20.
    •• Galli SF, Tsai M. IgE and mast cells in allergic disease. Nat Med. 2012;18:693–704. Excellent review of the concept of trained immunity. This paper reviews the process of epigenetic changes in innate cells after encounters with pathogens, which can alter transcription and cellular metabolism.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Alenius H, Laouini D, Woodward A, Mizoguchi E, Bhan AK, Castigli E, et al. Mast cells regulate IFN-gamma expression in the skin and circulating IgE levels in allergen-induced skin inflammation. J Allergy Clin Immunol. 2002;109:106–13.CrossRefPubMedGoogle Scholar
  22. 22.
    de Boer JD, Yang J, van den Boogaard FE, Hoogendijk AJ, de Beer R, van der Zee JS, Roelofs JJ., van’t Veer C, de Vos C, van der Poll T. Mast cell deficient kit mice develope house dust mite-induced lung inflammation despite impaired eosinophil recruitment. J Innate Immunol. 2014;6.Google Scholar
  23. 23.
    Schipf A, Heilmann A, Boue L, Mossmann H, Brocker T, Rocken M. Th2 cells shape the differentiation of development T cell responses during interactions with dendritic cells in vivo. Eur J Immunol. 2003;33:1697–706.CrossRefPubMedGoogle Scholar
  24. 24.
    Na H, Cho M, Chung Y. Regulation of Th2 cell immunity by dendritic cells. Immune Netw. 2016;16:1–12.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    McLeod JJA, Baker BN, Ryan JJ. Mast cell production and response to IL-4 and IL-13. Cytokine. 2015;75:57–61.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kambayashi TLTM. Aytpical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? Nat Rev Immunol. 2014;11:719–30.CrossRefGoogle Scholar
  27. 27.
    Kallinich T, Beier KC, Wahn U, Stock P, Hamelmann E. T-cell co-stimulatory molecules: their role in allergic immune reactions. Eur Respir J. 2007;29:1246–55.CrossRefPubMedGoogle Scholar
  28. 28.
    Lotfi-Emran S, Ward B, Le QT, Pzez AL, Manjili MH, Woodfolk JA, Schwartz LB. Human mast cells present antigen to autologous CD4+ T cells. J Allergy Clin Immunol. 2017; in press.Google Scholar
  29. 29.
    •• Skokos D, Panse SL, Villa I, Rouseelle JC, Peronet R, David B, et al. Mast cell-dependent B and T lymphocyte activation is mediated by secretion of immunologically active exosomes. J Immunol. 2001;166:868–76. This work demonstrates the ability for mast cells to induce antigen-specific recall responses of T cells, and it is the first to report that mast cells can use their secretory granuels for antigen processing and presentation.CrossRefPubMedGoogle Scholar
  30. 30.
    •• Meltzer EO, Hamilos DL, Hadley JA, Lanza DC, Marple BF, Nicklas RA, et al. Rhinosinusitis: establishing definitions for clinical research and patient care. J Allergy Clin Immunol. 2004;114:155–212. This was the first study to show the potential for mast cell derived exosomes to regulate the function of other immune cells.CrossRefPubMedGoogle Scholar
  31. 31.
    merluzzi S, Betto E, Ceccaroni AA, Magris R, Giunta M, Mion F. Mast cells, basophils and B cell connection network. Mol Immunol. 2015;63:94–103.CrossRefPubMedGoogle Scholar
  32. 32.
    Palm AE, Garcia-Faroldi G, Lundber M, Pejler G, Kleinau S. Activated mast cells promote differentiation of B cells into effector cells. Sci Rep. 2016;6.Google Scholar
  33. 33.
    Merluzzi S, Frossi B, Gri G, Parusso S, Tripodo C, Pucillo C. Mast cells enhance proliferation of B lymphocytes and drive their differentiation toward IgA-secreting plasma cells. Blood. 2010;115:2810–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Hong GU, Park BS, Park JW, Kim SY, RO JY. IgE production in CD40/CD40L cross-talk of B and mast cells and mediator release vis TGase 2 in mouse allergic asthma. Cell Signal. 2013;25:1514–25.CrossRefPubMedGoogle Scholar
  35. 35.
    Kozma GT, Losonczy G, Keszei M, Komlosi Z, Buzas E, Pallinger E, et al. Histamine deficiency in gene-targeted mice strongly reduces antigen-induced airway hyper-responsiveness, eosinophilia and allergen-specific IgE. Int Immunol. 2003;15:963–73.CrossRefPubMedGoogle Scholar
  36. 36.
    Sadek B, Stark H. Cherry-picked ligands at histamine receptor subtypes. Neuropharmacology. 2016;106:56–73.CrossRefPubMedGoogle Scholar
  37. 37.
    Jutel M, Watanabe T, Klunker S, Akdis M, Thoment OAR, Maloepszy J, Zak-Nejmark T, Koga R, Kobayashi T, Blaser K Akdis CA. Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. 2001;413.Google Scholar
  38. 38.
    • Swartzendruber JA, Byrne AJ, Bryce PJ. Histamine is required for IL-4-driven eosinophilic allergic responses. J Immunol. 2012;188:536–40. This study demonstrates an important link between histamine and IL-4 for eosinophil recruitment and IgE production.CrossRefPubMedGoogle Scholar
  39. 39.
    Kimata H, Fujimoto M. Histamine inhibits immunoglobulin production via histamine H2 receptors without affecting cell growth in human B cells. Clin Immunol Immunopathol. 1994;73:96–102.CrossRefPubMedGoogle Scholar
  40. 40.
    De Silva NS, Klein U. Dynamics of B cells in germinal centres. 2015;3:137–148.Google Scholar
  41. 41.
    Ma L, Xue HB, Guan XH, Shu CM, Zhang JH, Yu J. Possible pathogenic role of T helper type 9 cells and interleukin (IL)-9 in atopic dermatitis. Clin Exp Immunol. 2014;175:25–31.CrossRefPubMedGoogle Scholar
  42. 42.
    Jia L, Wang Y, Li J, Li S, Zhang Y, Shen J, et al. Detection of IL-9 producing T cells in PBMCs of allergic asthmatic patients. BMC Immunol. 2017;18:38.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Forbes EE, Groshcwitz K, Abonia JP, Brant EB, Cohen E, Blanchrd C, et al. IL-9 and mast cell-mediated intestinal permeability predisposes to oral antigen. J Exp Med. 2008;205:897–913.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wang Y, Shi J, Yan J, Xiao Z, Hou X, Lu P, et al. Germinal-center development of memory B cells driven by IL-9 from follicular helper T cells. Nat Immunol. 2017;18:921–30.CrossRefPubMedGoogle Scholar
  45. 45.
    •• Wambre E, Bajzik W, DeLong JH, O’Brien K, Nguyen Q-A, Speake C, Gersuk VH, DeBerg HA, Whalen E, Ni C, Farrington M, Jeong D, Robinson D, Linsley PS, Vickery BP, Kwok WW. A phenotypically and functionally distinct human TH2 cell subpopulation is associated with allergic disorders. Sci Transl Med 2017;9. This paper was the first to characterize a subset of memory Th2 cells specifically elevated in atopic patients, termed Th2a cells. These cells express CRTH2, CD49d, and CD161 and are distinct from conventional Th2 cells.Google Scholar
  46. 46.
    Sehra S, Yao W, Nguyen ET, Glosson-Byers NL, Akhtar N, Zhou B, et al. TH9 cells are required for tissue mast cell accumulation during allergic inflammation. J Allergy Clin Immunol. 2015;136:433–40.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Potaczek DP, Nastalek M, Wojas-Pelc A, Undas A. The relationship between total serum IgE levels and atopic sensitization in subjects with or without atopic dermatitis. Allergol Int. 2014;63:485–6.CrossRefPubMedGoogle Scholar
  48. 48.
    Davila I, Valero A, Entrenas LM, Valveny N, Herraez L. SIGE study group: relationship between serum total IgE and disease severity in patients with allergic asthma in Spain. J Investig Allergol Clin Immunol. 2015;25:120–7.PubMedGoogle Scholar
  49. 49.
    Flinn A, Hourihane JO. Allergic reaction to peanuts: can we predict reaction severity in the wild? Curr Allergy Asthma Rep. 2013;13:645–50.CrossRefPubMedGoogle Scholar
  50. 50.
    Fajt ML, Wenzel SE. Asthma phenotypes and the use of biologic medications in asthma and allergic disease: the next steps toward personalized care. J Allergy Clin Immunol. 2015;135:299–310.CrossRefPubMedGoogle Scholar
  51. 51.
    • Kawakami T, Blank U. From IgE to omalizumab. J Immunol. 2016;197:4187–92. A nice reivew of the history of IgE, IgE receptor signaling, and the clinical/biological outcomes of therapies targeting IgE.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    • Cheng LE, Hartmann K, Roers A, Krummel MF, Locksley RM. Perivascular mast cells dynamically probe cutaneous blood vessels to capture immunoglobulin E. Immunity. 2013;38:166–75. This paper demonstrates that perivascular mast cells obtain IgE by sampling across vessel walls.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Balzar S, Strand M, Rhodes D, Wenzel SE. IgE expression pattern in lung: relation to systemic IgE and asthma phenotypes. J Allergy Clin Immunol. 2007;119:855–62.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Baba S, Kondo K, Toma-Hirano M, Kanaya K, Suzukawa K, Ushio M, et al. Local increase in IgE and class switch recombination to IgE in nasal polyps in chronic rhnicosinusitis. Clin Exp Allergy. 2014;44:701–12.CrossRefPubMedGoogle Scholar
  55. 55.
    Takhar P, Corrigan CJ, Smurthwaite L, O’Connor BJ, Durham SR, Lee TH, et al. Class switch recombination to IgE in the bronchial mucosa of atopic and nonatopic patients with asthma. J Allergy Clin Immunol. 2007;119:213–8.CrossRefPubMedGoogle Scholar
  56. 56.
    Coker HA, Fear DJ, Banfield GK, Durham SR, Gould HJ. Allergen drives class switching to IgE in the nasal mucosa in allergic rhinitis. J Immunol. 2005;174:5024–32.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Tania E. Velez
    • 1
  • Paul J. Bryce
    • 1
  • Kathryn E. Hulse
    • 1
  1. 1.Division of Allergy-ImmunologyNorthwestern University Feinberg School of MedicineChicagoUSA

Personalised recommendations