Advertisement

Diagnostic Tools for Inborn Errors of Human Immunity (Primary Immunodeficiencies and Immune Dysregulatory Diseases)

  • Annely M. Richardson
  • Ann M. Moyer
  • Linda Hasadsri
  • Roshini S. Abraham
Immune Deficiency and Dysregulation (DP Huston and C Kuo, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Immune Deficiency and Dysregulation

Abstract

Purpose of Review

The purpose of this review is to provide an overview of diagnostic testing in primary immunodeficiency and immune dysregulatory disorders (PIDDs), particularly focusing on flow cytometry and genetic techniques, utilizing specific examples of PIDDs.

Recent Findings

Flow cytometry remains a vital tool in the diagnosis and monitoring of immunological diseases. Its utility ranges from cellular analysis and specific protein quantitation to functional assays and signaling pathway analysis. Mass cytometry combines flow cytometry and mass spectrometry to dramatically increase the throughput of multivariate single-cell analysis. Next-generation sequencing in combination with other molecular techniques and processing algorithms has become more widely available and identified the diverse and heterogeneous genetic underpinnings of these disorders.

Summary

As the spectrum of disease is further clarified by increasing immunological, genetic, and epigenetic knowledge, the careful application of these diagnostic tools and bioinformatics will assist not only in our understanding of these complex disorders, but also enable the implementation of personalized therapeutic approaches for disease management.

Keywords

Flow cytometry Genomics Primary immunodeficiencies Immune dysregulatory diseases Mass cytometry Diagnostic immunology 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Robinson JP, Roederer M. Flow cytometry strikes gold. Science. 2015;350(6262):739–40.  https://doi.org/10.1126/science.aad6770.
  2. 2.
    Abraham RS, Aubert G. Flow cytometry, a versatile tool for diagnosis and monitoring of primary immunodeficiencies. Clin Vaccine Immunol. 2016;23(4):254–71.  https://doi.org/10.1128/CVI.00001-16.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Oliveira JB, Bleesing JJ, Dianzani U, Fleisher TA, Jaffe ES, Lenardo MJ, et al. Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH International Workshop. Blood. 2010;116(14):e35–40.  https://doi.org/10.1182/blood-2010-04-280347.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Takagi M, Ogata S, Ueno H, Yoshida K, Yeh T, Hoshino A, et al. Haploinsufficiency of TNFAIP3 (A20) by germline mutation is involved in autoimmune lymphoproliferative syndrome. J Allergy Clin Immunol. 2017;139(6):1914–22.  https://doi.org/10.1016/j.jaci.2016.09.038.
  5. 5.
    Bride K, Teachey D. Autoimmune lymphoproliferative syndrome: more than a FAScinating disease. F1000Res. 2017;6:1928.  https://doi.org/10.12688/f1000research.11545.1.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Bleesing JJ, Brown MR, Straus SE, Dale JK, Siegel RM, Johnson M, et al. Immunophenotypic profiles in families with autoimmune lymphoproliferative syndrome. Blood. 2001;98(8):2466–73.PubMedCrossRefGoogle Scholar
  7. 7.
    Bleesing JJH, Brown MR, Dale JK, Straus SE, Lenardo MJ, Puck JM, et al. TcR-alpha/beta(+) CD4(−)CD8(−) T cells in humans with the autoimmune lymphoproliferative syndrome express a novel CD45 isoform that is analogous to murine B220 and represents a marker of altered O-glycan biosynthesis. Clin Immunol. 2001;100(3):314–24.  https://doi.org/10.1006/clim.2001.5069.PubMedCrossRefGoogle Scholar
  8. 8.
    Bleesing JJ, Fleisher TA. Human B cells express a CD45 isoform that is similar to murine B220 and is downregulated with acquisition of the memory B-cell marker CD27. Cytometry B Clin Cytom. 2003;51(1):1–8.  https://doi.org/10.1002/cyto.b.10007.PubMedCrossRefGoogle Scholar
  9. 9.
    Bleesing JJH, Janik JE, Fleisher TA. Common expression of an unusual CD45 isoform on T cells from patients with large granular lymphocyte leukaemia and autoimmune lymphoproliferative syndrome. Brit J Haematol. 2003;120(1):93–6.  https://doi.org/10.1046/j.1365-2141.2003.04034.x.CrossRefGoogle Scholar
  10. 10.
    •• Rensing-Ehl A, Janda A, Lorenz MR, Gladstone BP, Fuchs I, Abinun M, et al. Sequential decisions on FAS sequencing guided by biomarkers in patients with lymphoproliferation and autoimmune cytopenia. Haematologica. 2013;98(12):1948–55.  https://doi.org/10.3324/haematol.2012.081901. This study identified and described the use of certain markers, in particular vitamin B12, soluble FAS ligand, and interleukin-10, to help predict the presence of FAS mutation in patients with possible autoimmune lymphoproliferative syndrome. Based upon their findings, the authors created a web-based probability tool to help calculate FAS mutation likelihood to help guide genetic work-up.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    van de Ven A, Seidl M, Drendel V, Schmitt-Graeff A, Voll RE, Rensing-Ehl A, et al. IgG4-related disease in autoimmune lymphoproliferative syndrome. Clin Immunol. 2017;180:97–9.  https://doi.org/10.1016/j.clim.2017.05.003.PubMedCrossRefGoogle Scholar
  12. 12.
    Zhou Q, Wang HY, Schwartz DM, Stoffels M, Park YH, Zhang Y, et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat Genet. 2016;48(1):67–73.  https://doi.org/10.1038/ng.3459.PubMedCrossRefGoogle Scholar
  13. 13.
    • Pai SY, de Boer H, Massaad MJ, Chatila TA, Keles S, Jabara HH, et al. Flow cytometry diagnosis of dedicator of cytokinesis 8 (DOCK8) deficiency. J Allergy Clin Immun. 2014;134(1):221–3.  https://doi.org/10.1016/j.jaci.2014.02.023. This study describes a flow cytometry assay to detect DOCK8 protein expression. The assay is reported to distinguish between affected individuals, carriers, and normal controls.PubMedCrossRefGoogle Scholar
  14. 14.
    • Janssen E, Tsitsikov E, Al-Herz W, Lefranc G, Megarbane A, Dasouki M, et al. Flow cytometry biomarkers distinguish DOCK8 deficiency from severe atopic dermatitis. Clin Immunol. 2014;150(2):220–4.  https://doi.org/10.1016/j.clim.2013.12.006. Using lymphocyte profiling, this study identified specific differences within T cell and B cell compartments, which are able to distinguish between severe atopic dermatitis and DOCK8 deficiency and guide further diagnostic work-up. PubMedCrossRefGoogle Scholar
  15. 15.
    •• Gifford CE, Weingartner E, Villanueva J, Johnson J, Zhang K, Filipovich AH, et al. Clinical flow cytometric screening of SAP and XIAP expression accurately identifies patients with SH2D1A and XIAP/BIRC4 mutations. Cytometry B Clin Cytom. 2014;86(4):263–71.  https://doi.org/10.1002/cyto.b.21166. This study provides the first data on accuracy of flow cytometry screening for the X-linked lymphoproliferative diseases SAP (XLP1) and XIAP (XLP2) with respect to final diagnosis. It also discusses the importance of appropriate cutoff threshold selection. PubMedCrossRefGoogle Scholar
  16. 16.
    Rigaud S, Fondaneche MC, Lambert N, Pasquier B, Mateo V, Soulas P, et al. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature. 2006;444(7115):110–4.  https://doi.org/10.1038/nature05257.PubMedCrossRefGoogle Scholar
  17. 17.
    Speckmann C, Lehmberg K, Albert MH, Damgaard RB, Fritsch M, Gyrd-Hansen M, et al. X-linked inhibitor of apoptosis (XIAP) deficiency: the spectrum of presenting manifestations beyond hemophagocytic lymphohistiocytosis. Clin Immunol. 2013;149(1):133–41.  https://doi.org/10.1016/j.clim.2013.07.004.PubMedCrossRefGoogle Scholar
  18. 18.
    Marsh RA, Villanueva J, Zhang KJ, Snow AL, Su HC, Madden L, et al. A rapid flow cytometric screening test for X-linked lymphoproliferative disease due to XIAP deficiency. Cytometry B Clin Cytom. 2009;76b(5):334–44.  https://doi.org/10.1002/cyto.b.20473.CrossRefGoogle Scholar
  19. 19.
    Ammann S, Elling R, Gyrd-Hansen M, Duckers G, Bredius R, Burns SO, et al. A new functional assay for the diagnosis of X-linked inhibitor of apoptosis (XIAP) deficiency. Clin Exp Immunol. 2014;176(3):394–400.  https://doi.org/10.1111/cei.12306.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Holland SM. Chronic granulomatous disease. Hematol Oncol Clin North Am. 2013;27(1):89–99, viii.  https://doi.org/10.1016/j.hoc.2012.11.002.PubMedCrossRefGoogle Scholar
  21. 21.
    Mauch L, Lun A, O'Gorman MR, Harris JS, Schulze I, Zychlinsky A, et al. Chronic granulomatous disease (CGD) and complete myeloperoxidase deficiency both yield strongly reduced dihydrorhodamine 123 test signals but can be easily discerned in routine testing for CGD. Clin Chem. 2007;53(5):890–6.  https://doi.org/10.1373/clinchem.2006.083444.PubMedCrossRefGoogle Scholar
  22. 22.
    Milligan KL, Mann D, Rump A, Anderson VL, Hsu AP, Kuhns DB, et al. Complete myeloperoxidase deficiency: beware the “false-positive” dihydrorhodamine oxidation. J Pediatr. 2016;176:204–6.  https://doi.org/10.1016/j.jpeds.2016.05.047.PubMedCrossRefGoogle Scholar
  23. 23.
    Vowells SJ, Fleisher TA, Sekhsaria S, Alling DW, Maguire TE, Malech HL. Genotype-dependent variability in flow cytometric evaluation of reduced nicotinamide adenine dinucleotide phosphate oxidase function in patients with chronic granulomatous disease. J Pediatr. 1996;128(1):104–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Schaffer AA, Salzer U, Hammarstrom L, Grimbacher B. Deconstructing common variable immunodeficiency by genetic analysis. Curr Opin Genet Dev. 2007;17(3):201–12.  https://doi.org/10.1016/j.gde.2007.04.002.PubMedCrossRefGoogle Scholar
  25. 25.
    Yong PF, Thaventhiran JE, Grimbacher B. “A rose is a rose is a rose,” but CVID is not CVID common variable immune deficiency (CVID), what do we know in 2011? Adv Immunol. 2011;111:47–107.  https://doi.org/10.1016/b978-0-12-385991-4.00002-7.PubMedCrossRefGoogle Scholar
  26. 26.
    •• Gathmann B, Mahlaoui N, CEREDIH, Gerard L, Oksenhendler E, Warnatz K, et al. Clinical picture and treatment of 2212 patients with common variable immunodeficiency. J Allergy Clin Immunol. 2014;134(1):116–26.  https://doi.org/10.1016/j.jaci.2013.12.1077. This is a retrospective analysis of a large number of European patients with CVID to better characterize clinical characteristics, management, and outcome. PubMedCrossRefGoogle Scholar
  27. 27.
    Resnick ES, Moshier EL, Godbold JH, Cunningham-Rundles C. Morbidity and mortality in common variable immune deficiency over 4 decades. Blood. 2012;119(7):1650–7.  https://doi.org/10.1182/blood-2011-09-377945.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Warnatz K, Denz A, Drager R, Braun M, Groth C, Wolff-Vorbeck G, et al. Severe deficiency of switched memory B cells (CD27(+)IgM(−)IgD(−)) in subgroups of patients with common variable immunodeficiency: a new approach to classify a heterogeneous disease. Blood. 2002;99(5):1544–51.PubMedCrossRefGoogle Scholar
  29. 29.
    Wehr C, Kivioja T, Schmitt C, Ferry B, Witte T, Eren E, et al. The EUROclass trial: defining subgroups in common variable immunodeficiency. Blood. 2008;111(1):77–85.  https://doi.org/10.1182/blood-2007-06-091744.PubMedCrossRefGoogle Scholar
  30. 30.
    Ameratunga R, Woon ST, Gillis D, Koopmans W, Steele R. New diagnostic criteria for common variable immune deficiency (CVID), which may assist with decisions to treat with intravenous or subcutaneous immunoglobulin. Clin Exp Immunol. 2013;174(2):203–11.  https://doi.org/10.1111/cei.12178.PubMedPubMedCentralGoogle Scholar
  31. 31.
    • Ameratunga R, Brewerton M, Slade C, Jordan A, Gillis D, Steele R, et al. Comparison of diagnostic criteria for common variable immunodeficiency disorder. Front Immunol 2014;5(415):1–19. This study compares the original 1999 European Society of Immune Deficiencies (ESID)/Pan American Group for Immune Deficiency (PAGID) CVID diagnostic criteria with those proposed by Ameratunga 2013 and the revised 2014 ESID diagnostic criteria. Google Scholar
  32. 32.
    •• Bonilla FA, Barlan I, Chapel H, Costa-Carvalho BT, Cunningham-Rundles C, de la Morena MT, et al. International Consensus Document (ICON): common variable immunodeficiency disorders. J Aller Clin Immunol Pract. 2016;4(1):38–59.  https://doi.org/10.1016/j.jaip.2015.07.025. This is the updated consensus document regarding the criteria for diagnosis of common variable immunodeficiency. CrossRefGoogle Scholar
  33. 33.
    Warnatz K, Salzer U, Rizzi M, Fischer B, Gutenberger S, Bohm J, et al. B-cell activating factor receptor deficiency is associated with an adult-onset antibody deficiency syndrome in humans. Proc Natl Acad Sci U S A. 2009;106(33):13945–50.  https://doi.org/10.1073/pnas.0903543106.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Castigli E, Wilson SA, Garibyan L, Rachid R, Bonilla F, Schneider L, et al. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet. 2005;37(8):829–34.  https://doi.org/10.1038/ng1601.PubMedCrossRefGoogle Scholar
  35. 35.
    Zhang L, Radigan L, Salzer U, Behrens TW, Grimbacher B, Diaz G, et al. Transmembrane activator and calcium-modulating cyclophilin ligand interactor mutations in common variable immunodeficiency: clinical and immunologic outcomes in heterozygotes. J Allergy Clin Immunol. 2007;120(5):1178–85.  https://doi.org/10.1016/j.jaci.2007.10.001.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Mohammadi J, Liu CH, Aghamohammadi A, Bergbreiter A, Du LK, Lu JY, et al. Novel mutations in TACI (TNFRSF13B) causing common variable immunodeficiency. J Clin Immunol. 2009;29(6):777–85.  https://doi.org/10.1007/s10875-009-9317-5.PubMedCrossRefGoogle Scholar
  37. 37.
    Romberg N, Chamberlain N, Saadoun D, Gentile M, Kinnunen T, Ng YS, et al. CVID-associated TACI mutations affect autoreactive B cell selection and activation. J Clin Invest. 2013;123(10):4283–93.  https://doi.org/10.1172/Jci69854.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Salzer U, Chapel HM, Webster ADB, Pan-Hammarstrom Q, Schmitt-Graeff A, Schlesier M, et al. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat Genet. 2005;37(8):820–8.  https://doi.org/10.1038/ng1600.PubMedCrossRefGoogle Scholar
  39. 39.
    Grimbacher B, Hutloff A, Schlesier M, Glocker E, Warnatz K, Drager R, et al. Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat Immunol. 2003;4(3):261–8.  https://doi.org/10.1038/ni902.PubMedCrossRefGoogle Scholar
  40. 40.
    Salzer U, Maul-Pavicic A, Cunningham-Rundles C, Urschel S, Belohradsky BH, Litzman J, et al. ICOS deficiency in patients with common variable immunodeficiency. Clin Immunol. 2004;113(3):234–40.  https://doi.org/10.1016/j.clim.2004.07.002.PubMedCrossRefGoogle Scholar
  41. 41.
    van Zelm MC, Reisli I, van der Burg M, Castano D, van Noesel CJM, van Tol MJD, et al. An antibody-deficiency syndrome due to mutations in the CD19 gene. N Engl J Med. 2006;354(18):1901–12.  https://doi.org/10.1056/NEJMoa051568.PubMedCrossRefGoogle Scholar
  42. 42.
    Kuijpers TW, Bende RJ, Baars PA, Grummels A, Derks IA, Dolman KM, et al. CD20 deficiency in humans results in impaired T cell-independent antibody responses. J Clin Invest. 2010;120(1):214–22.  https://doi.org/10.1172/JCI40231.PubMedCrossRefGoogle Scholar
  43. 43.
    Frank MM. CD21 deficiency, complement, and the development of common variable immunodeficiency. J Allergy Clin Immunol. 2012;129(3):811–3.  https://doi.org/10.1016/j.jaci.2011.12.982.PubMedCrossRefGoogle Scholar
  44. 44.
    Thiel J, Kimmig L, Salzer U, Grudzien M, Lebrecht D, Hagena T, et al. Genetic CD21 deficiency is associated with hypogammaglobulinemia. J Allergy Clin Immunol. 2012;129(3):801–10 e6.  https://doi.org/10.1016/j.jaci.2011.09.027.PubMedCrossRefGoogle Scholar
  45. 45.
    van Zelm MC, Smet J, Adams B, Mascart F, Schandene L, Janssen F, et al. CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J Clin Invest. 2010;120(4):1265–74.  https://doi.org/10.1172/JCI39748.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    van Montfrans JM, Hoepelman AIM, Otto S, van Gijn M, van de Corput L, de Weger RA, et al. CD27 deficiency is associated with combined immunodeficiency and persistent symptomatic EBV viremia. J Allergy Clin Immunol. 2012;129(3):787–U274.  https://doi.org/10.1016/j.jaci.2011.11.013.PubMedCrossRefGoogle Scholar
  47. 47.
    Pieper K, Rizzi M, Speletas M, Smulski CR, Sic H, Kraus H, et al. A common single nucleotide polymorphism impairs B-cell activating factor receptor’s multimerization, contributing to common variable immunodeficiency. J Allergy Clin Immunol. 2014;133(4):1222–5.  https://doi.org/10.1016/j.jaci.2013.11.021.PubMedCrossRefGoogle Scholar
  48. 48.
    Orange JS, Glessner JT, Resnick E, Sullivan KE, Lucas M, Ferry B, et al. Genome-wide association identifies diverse causes of common variable immunodeficiency. J Allergy Clin Immunol. 2011;127(6):1360–U79.  https://doi.org/10.1016/j.jaci.2011.02.039.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Malphettes M, Gerard L, Carmagnat M, Mouillot G, Vince N, Boutboul D, et al. Late-onset combined immune deficiency: a subset of common variable immunodeficiency with severe T cell defect. Clin Infect Dis. 2009;49(9):1329–38.  https://doi.org/10.1086/606059.PubMedCrossRefGoogle Scholar
  50. 50.
    Ardeniz O, Cunningham-Rundles C. Granulomatous disease in common variable immunodeficiency. Clin Immunol. 2009;133(2):198–207.  https://doi.org/10.1016/j.clim.2009.05.001.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Hurst JR, Verma N, Lowe D, Baxendale HE, Jolles S, Kelleher P, et al. British Lung Foundation/United Kingdom primary immunodeficiency network consensus statement on the definition, diagnosis, and management of granulomatous-lymphocytic interstitial lung disease in common variable immunodeficiency disorders. J Allergy Clin Immunol Pract. 2017;5(4):938–45.  https://doi.org/10.1016/j.jaip.2017.01.021.PubMedCrossRefGoogle Scholar
  52. 52.
    • Lo B, Fritz JM, Su HC, Uzel G, Jordan MB, Lenardo MJ. CHAI and LATAIE: new genetic diseases of CTLA-4 checkpoint insufficiency. Blood. 2016;128(8):1037–42.  https://doi.org/10.1182/blood-2016-04-712612. This study describes the two conditions of CTLA-4 and LRBA deficiency, coining the names “CHAI” and “LATAIE,” respectively for the conditions. It also notes that blockade of CTLA-4 by ipilimumab in the treatment of metastatic melanoma may result in a similar clinical phenotype. PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Lopez-Herrera G, Tampella G, Pan-Hammarstrom Q, Herholz P, Trujillo-Vargas CM, Phadwal K, et al. Deleterious mutations in LRBA are associated with a syndrome of immune deficiency and autoimmunity. Am J Hum Genet. 2012;90(6):986–1001.  https://doi.org/10.1016/j.ajhg.2012.04.015.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    •• Hou TZ, Verma N, Wanders J, Kennedy A, Soskic B, Janman D, et al. Identifying functional defects in patients with immune dysregulation due to LRBA and CTLA-4 mutations. Blood. 2017;129(11):1458–68.  https://doi.org/10.1182/blood-2016-10-745174. This is the first report of a three-part flow cytometry assay to identify and distinguish between LRBA and CTLA-4 deficiency. Assay components include the measurement of CTLA-4 expression, CTLA-4 induction, and CTLA-4 ligand uptake. PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    •• Lo B, Zhang KJ, Lu W, Zheng LX, Zhang Q, Kanellopoulou C, et al. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science. 2015;349(6246):436–40.  https://doi.org/10.1126/science.aaa1663. This report identifies the mechanism of disease in LRBA deficiency and demonstrates the use of abatacept in ameliorating the disease phenotype. PubMedCrossRefGoogle Scholar
  56. 56.
    •• Picard C, Bobby Gaspar H, Al-Herz W, Bousfiha A, Casanova JL, Chatila T, et al. International Union of Immunological Societies: 2017 Primary Immunodeficiency Diseases Committee report on inborn errors of immunity. J Clin Immunol. 2018;38(1):96–128.  https://doi.org/10.1007/s10875-017-0464-9. This is the comprehensive classification on primary immunodeficiency diseases by the IUIS Expert Committee for Primary Immunodeficiency. PubMedCrossRefGoogle Scholar
  57. 57.
    •• Bousfiha A, Jeddane L, Picard C, Ailal F, Bobby Gaspar H, Al-Herz W, et al. The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies. J Clin Immunol. 2018;38(1):129–43.  https://doi.org/10.1007/s10875-017-0465-8. This is the comprehensive phenotypical classification of primary immunodeficiency diseases written by the IUIS Expert Committee for Primary Immunodeficiency to accompany the above comprehensive IUIS PIDD classification. PubMedCrossRefGoogle Scholar
  58. 58.
    von Bernuth H, Picard C, Puel A, Casanova JL. Experimental and natural infections in MyD88-and IRAK-4-deficient mice and humans. Eur J Immunol. 2012;42(12):3126–35.  https://doi.org/10.1002/eji.201242683.CrossRefGoogle Scholar
  59. 59.
    Guo YQ, Audry M, Ciancanelli M, Alsina L, Azevedo J, Herman M, et al. Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. J Exp Med. 2011;208(10):2083–98.  https://doi.org/10.1084/jem.20101568.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Pelka K, Phulphagar K, Zimmermann J, Stahl R, Schmid-Burgk JL, Schmidt T, et al. Cutting edge: the UNC93B1 tyrosine-based motif regulates trafficking and TLR responses via separate mechanisms. J Immunol. 2014;193(7):3257–61.  https://doi.org/10.4049/jimmunol.1301886.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Mork N, Kofod-Olsen E, Sorensen KB, Bach E, Orntoft TF, Ostergaard L, et al. Mutations in the TLR3 signaling pathway and beyond in adult patients with herpes simplex encephalitis. Genes Immun. 2015;16(8):552–66.  https://doi.org/10.1038/gene.2015.46.PubMedCrossRefGoogle Scholar
  62. 62.
    Deering RP, Orange JS. Development of a clinical assay to evaluate toll-like receptor function. Clin Vaccine Immunol. 2006;13(1):68–76.  https://doi.org/10.1128/Cvi.13.1.68-76.2006.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Jansen K, Blimkie D, Furlong J, Hajjar A, Rein-Weston A, Crabtree J, et al. Polychromatic flow cytometric high-throughput assay to analyze the innate immune response to Toll-like receptor stimulation. J Immunol Methods. 2008;336(2):183–92.  https://doi.org/10.1016/j.jim.2008.04.013.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Chapgier A, Wynn RF, Jouanguy E, Filipe-Santos O, Zhang SY, Feinberg J, et al. Human complete Stat-1 deficiency is associated with defective type I and IIIFN responses in vitro but immunity to some low virulence viruses in vivo. J Immunol. 2006;176(8):5078–83.PubMedCrossRefGoogle Scholar
  65. 65.
    Hambleton S, Goodbourn S, Young DF, Dickinson P, Mohamad SMB, Valappil M, et al. STAT2 deficiency and susceptibility to viral illness in humans. Proc Natl Acad Sci U S A. 2013;110(8):3053–8.  https://doi.org/10.1073/pnas.1220098110.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Moens L, Van Eyck L, Jochmans D, Mitera T, Frans G, Bossuyt X, et al. A novel kindred with inherited STAT2 deficiency and severe viral illness. J Allergy Clin Immunol. 2017;139(6):1995–1997.e9.  https://doi.org/10.1016/j.jaci.2016.10.033.PubMedCrossRefGoogle Scholar
  67. 67.
    Chandrasekaran P, Zimmerman O, Paulson M, Sampaio EP, Freeman AF, Sowerwine KJ, et al. Distinct mutations at the same positions of STAT3 cause either loss or gain of function. J Allergy Clin Immunol. 2016;138(4):1222–4.  https://doi.org/10.1016/j.jaci.2016.05.007.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Krutzik PO, Irish JM, Nolan GP, Perez OD. Analysis of protein phosphorylation and cellular signaling events by flow cytometry: techniques and clinical applications. Clin Immunol. 2004;110(3):206–21.  https://doi.org/10.1016/j.clim.2003.11.009.PubMedCrossRefGoogle Scholar
  69. 69.
    Wu S, Jin L, Vence L, Radvanyi LG. Development and application of ‘phosphoflow’ as a tool for immunomonitoring. Expert Rev Vaccines. 2010;9(6):631–43.  https://doi.org/10.1586/Erv.10.59.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Fleisher TA, Dorman SE, Anderson JA, Vail M, Brown MR, Holland SM. Detection of intracellular phosphorylated STAT-1 by flow cytometry. Clin Immunol. 1999;90(3):425–30.  https://doi.org/10.1006/clim.1998.4654.PubMedCrossRefGoogle Scholar
  71. 71.
    Lafarge S, Hamzeh-Cognasse H, Chavarin P, Genin C, Garraud O, Cognasse F. A flow cytometry technique to study intracellular signals NF-kappa B and STAT3 in peripheral blood mononuclear cells. BMC Mol Biol. 2007;8:64.  https://doi.org/10.1186/1471-2199-8-64.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Uzel G, Frucht DM, Fleisher TA, Holland SM. Detection of intracellular phosphorylated STAT-4 by flow cytometry. Clinical Immunology. 2001;100(3):270–6.  https://doi.org/10.1006/clim.2001.5078.PubMedCrossRefGoogle Scholar
  73. 73.
    Gaipa G, Bugarin C, Longoni D, Cesana S, Molteni C, Faini A, et al. Aberrant GM-CSF signal transduction pathway in juvenile myelomonocytic leukemia assayed by flow cytometric intracellular STAT5 phosphorylation measurement. Leukemia. 2009;23(4):791–3.  https://doi.org/10.1038/leu.2008.265.PubMedCrossRefGoogle Scholar
  74. 74.
    Montag DT, Lotze MT. Rapid flow cytometric measurement of cytokine-induced phosphorylation pathways [CIPP] in human peripheral blood leukocytes. Clin Immunol. 2006;121(2):215–26.  https://doi.org/10.1016/j.clim.2006.06.013.PubMedCrossRefGoogle Scholar
  75. 75.
    Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X, et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem. 2009;81(16):6813–22.  https://doi.org/10.1021/ac901049w.PubMedCrossRefGoogle Scholar
  76. 76.
    Bjornson ZB, Nolan GP, Fantl WJ. Single-cell mass cytometry for analysis of immune system functional states. Curr Opin Immunol. 2013;25(4):484–94.  https://doi.org/10.1016/j.coi.2013.07.004.PubMedCrossRefGoogle Scholar
  77. 77.
    •• Hsieh EWY, Hernandez JD. Novel tools for primary immunodeficiency diagnosis: making a case for deep profiling. Curr Opin Allergy Clin. 2016;16(6):549–56.  https://doi.org/10.1097/Aci.0000000000000319. This report discusses the application and utility of mass cytometry with regard to the evaluation of primary immunodeficiencies. CrossRefGoogle Scholar
  78. 78.
    Cols M, Rahman A, Maglione PJ, Garcia-Carmona Y, Simchoni N, Ko HBM, et al. Expansion of inflammatory innate lymphoid cells in patients with common variable immune deficiency. J Allergy Clin Immunol. 2016;137(4):1206–U836.  https://doi.org/10.1016/j.jaci.2015.09.013.PubMedCrossRefGoogle Scholar
  79. 79.
    Verbsky J, Thakar M, Routes J. The Wisconsin approach to newborn screening for severe combined immunodeficiency. J Allergy Clin Immunol. 2012;129(3):622–7.  https://doi.org/10.1016/j.jaci.2011.12.004.PubMedCrossRefGoogle Scholar
  80. 80.
    •• Kwan A, Abraham RS, Currier R, Brower A, Andruszewski K, Abbott JK, et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA. 2014;312(7):729–38.  https://doi.org/10.1001/jama.2014.9132. This is the first report to review newborn screening data from 11 participating states, including over 3 million newborns, regarding the diagnosis and outcome of SCID and non-SCID T cell lymphopenia. PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    • van der Spek J, Groenwold RHH, van der Burg M, van Montfrans JM. TREC based newborn screening for severe combined immunodeficiency disease: a systematic review. J Clin Immunol. 2015;35(4):416–30.  https://doi.org/10.1007/s10875-015-0152-6. This is a systematic literature review and comparison of TREC-based newborn screening algorithms for SCID, including data from multiple countries and discussion of different TREC cutoff values. PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    • Mauracher AA, Pagliarulo F, Faes L, Vavassori S, Gungor T, Bachmann LM, et al. Causes of low neonatal T-cell receptor excision circles: a systematic review. J Aller Cl Imm-Pract. 2017;5(5):1457–1460.e22.  https://doi.org/10.1016/j.jaip.2017.02.009. This is a systematic review regarding the differential diagnosis of low T cell receptor excision circles (TREC), including recommendations for further evaluation and work-up. CrossRefGoogle Scholar
  83. 83.
    Abraham RS. Severe combined immunodeficiencies. Clin Lab News. 2013;39(11):4.Google Scholar
  84. 84.
    •• Vidal-Folch N, Milosevic D, Majumdar R, Gavrilov D, Matern D, Raymond K, et al. A droplet digital PCR method for severe combined immunodeficiency newborn screening. J Mol Diagn. 2017;19(5):755–65.  https://doi.org/10.1016/j.jmoldx.2017.05.011. This study applied digital droplet PCR technique to newborn dried blood samples for TREC analysis to screen for SCID with 100% specificity. The sensitivity improved with adjustment of TREC threshold level. PubMedCrossRefGoogle Scholar
  85. 85.
    Hudecova I. Digital PCR analysis of circulating nucleic acids. Clin Biochem. 2015;48(15):948–56.  https://doi.org/10.1016/j.clinbiochem.2015.03.015.PubMedCrossRefGoogle Scholar
  86. 86.
    •• Pretto D, Maar D, Yrigollen CM, Regan J, Tassone F. Screening newborn blood spots for 22q11.2 deletion syndrome using multiplex droplet digital PCR. Clin Chem. 2015;61(1):182–90.  https://doi.org/10.1373/clinchem.2014.230086. This study applied digital droplet PCR to newborn dried blood samples to diagnose 22q11.2 deletion with good sensitivity and specificity, being able to distinguish between 3-Mb and 1.4-Mb deletions. PubMedCrossRefGoogle Scholar
  87. 87.
    •• Kobrynski LJ, Yazdanpanah GK, Koontz D, Lee FK, Vogt RF. MALDI-TOF-MS assay to detect the hemizygous 22q11.2 deletion in DNA from dried blood spots. Clin Chem. 2016;62(1):287–92.  https://doi.org/10.1373/clinchem.2015.247148. This study utilized MALDI-time-of-flight mass spectrometry to measure the expression of UFD1L from newborn blood samples as a proxy for 22q11.2 deletion. PCR for UFD1L was performed on newborn dried blood sample and then analyzed by MALDI-TOF mass spectrometry. Results were 100% consistent with those of FISH/microarray. PubMedCrossRefGoogle Scholar
  88. 88.
    Azzari C, la Marca G, Resti M. Neonatal screening for severe combined immunodeficiency caused by an adenosine deaminase defect: a reliable and inexpensive method using tandem mass spectrometry. J Allergy Clin Immunol. 2011;127(6):1394–9.  https://doi.org/10.1016/j.jaci.2011.03.040.PubMedCrossRefGoogle Scholar
  89. 89.
    Lee YN, Frugoni F, Dobbs K, Tirosh I, Du L, Ververs FA, et al. Characterization of T and B cell repertoire diversity in patients with RAG deficiency. Sci Immunol. 2016;1(6):p1–12. doi: https://doi.org/10.1126/sciimmunol.aah6109.
  90. 90.
    • Lev A, Simon AJ, Bareket M, Bielorai B, Hutt D, Amariglio N, et al. The kinetics of early T and B cell immune recovery after bone marrow transplantation in RAG-2-deficient SCID patients. PLoS One. 2012;7(1):e30494.  https://doi.org/10.1371/journal.pone.0030494. This study followed infants with RAG-2 deficiency before and after bone marrow transplant to assess for recovery of B and T cell compartments. A favorable outcome was associated with the early peripheral presence of TCR excision circles and kappa-deleting recombination excision circles, which were present prior to normalization of TCR/BCR repertoires. PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    •• Davies EG, Cheung M, Gilmour K, Maimaris J, Curry J, Furmanski A, et al. Thymus transplantation for complete DiGeorge syndrome: European experience. J Allergy Clin Immunol. 2017;  https://doi.org/10.1016/j.jaci.2017.03.020. This is the first report of thymic transplantation outcomes at a European center. As part of post-transplant monitoring, authors followed the generation of TCR diversity.
  92. 92.
    Chan A, Scalchunes C, Boyle M, Puck JM. Early vs. delayed diagnosis of severe combined immunodeficiency: a family perspective survey. Clin Immunol. 2011;138(1):3–8.  https://doi.org/10.1016/j.clim.2010.09.010.PubMedCrossRefGoogle Scholar
  93. 93.
    •• ADW L, Lee PP, Mao HW, Chan KW, Chen XY, Chen TX, et al. Family history of early infant death correlates with earlier age at diagnosis but not shorter time to diagnosis for severe combined immunodeficiency. Front Immunol. 2017;8:808.  https://doi.org/10.3389/fimmu.2017.00808. This study identified clinical features associated with an earlier diagnosis of SCID in a large retrospective cohort of 147 SCID patients in the Asian Primary Immunodeficiency Network, including family history, candidiasis, BCG infection, and lymphopenia. The authors recommended further work-up with lymphocyte subset analysis for infants presenting with the above clinical features to help shorten the time to SCID diagnosis. CrossRefGoogle Scholar
  94. 94.
    Pai SY, Logan BR, Griffith LM, Buckley RH, Parrott RE, Dvorak CC, et al. Transplantation outcomes for severe combined immunodeficiency, 2000-2009. N Engl J Med. 2014;371(5):434–46.  https://doi.org/10.1056/NEJMoa1401177.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    • Meyts I, Bosch B, Bolze A, Boisson B, Itan Y, Belkadi A, et al. Exome and genome sequencing for inborn errors of immunity. J Allergy Clin Immunol. 2016;138(4):957–69.  https://doi.org/10.1016/j.jaci.2016.08.003. This report discusses the application of next-generation sequencing to the evaluation of primary immunodeficiencies. PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    de Magalhaes JP, Finch CE, Janssens G. Next-generation sequencing in aging research: emerging applications, problems, pitfalls and possible solutions. Ageing Res Rev. 2010;9(3):315–23.  https://doi.org/10.1016/j.arr.2009.10.006.PubMedCrossRefGoogle Scholar
  97. 97.
    • Yu H, Zhang VW, Stray-Pedersen A, Hanson IC, Forbes LR, de la Morena MT, et al. Rapid molecular diagnostics of severe primary immunodeficiency determined by using targeted next-generation sequencing. J Allergy Clin Immunol. 2016;138(4):1142–51 e2.  https://doi.org/10.1016/j.jaci.2016.05.035. This study developed a next-generation targeted gene panel for use in the diagnosis of SCID. The panel included 46 genes as well as single nucleotide variants and copy number variants with 100% coverage. Using this panel, a genetic diagnosis was determined in 14 of 20 patients with suspected SCID. PubMedCrossRefGoogle Scholar
  98. 98.
    Patel DR, Yu H, Wong LJC, Lupski JR, Seeborg FO, Rider NL, et al. Linking newborn severe combined immunodeficiency screening with targeted exome sequencing: a case report. J Aller Clin Immunol Pract. 2017;5(5):1442–4.  https://doi.org/10.1016/j.jaip.2017.03.004.CrossRefGoogle Scholar
  99. 99.
    Rehm HL, Bale SJ, Bayrak-Toydemir P, Berg JS, Brown KK, Deignan JL, et al. ACMG clinical laboratory standards for next-generation sequencing. Genet Med. 2013;15(9):733–47.  https://doi.org/10.1038/gim.2013.92.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    • Stoddard JL, Niemela JE, Fleisher TA, Rosenzweig SD. Targeted NGS: a cost-effective approach to molecular diagnosis of PIDs. Front Immunol. 2014;5:531.  https://doi.org/10.3389/fimmu.2014.00531.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Seleman M, Hoyos-Bachiloglu R, Geha RS, Chou J. Uses of next-generation sequencing technologies for the diagnosis of primary immunodeficiencies. Front Immunol. 2017;8:847.  https://doi.org/10.3389/fimmu.2017.00847. This study screened a group of 120 patients with PIDD who lacked a genetic diagnosis with a 173-gene TGS panel to identify a causative variant in 15% of cases. PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Nijman IJ, van Montfrans JM, Hoogstraat M, Boes ML, van de Corput L, Renner ED, et al. Targeted next-generation sequencing: a novel diagnostic tool for primary immunodeficiencies. J Allergy Clin Immunol. 2014;133(2):529–34.  https://doi.org/10.1016/j.jaci.2013.08.032.PubMedCrossRefGoogle Scholar
  103. 103.
    Al-Mousa H, Abouelhoda M, Monies DM, Al-Tassan N, Al-Ghonaium A, Al-Saud B, et al. Unbiased targeted next-generation sequencing molecular approach for primary immunodeficiency diseases. J Allergy Clin Immunol. 2016;137(6):1780–7.  https://doi.org/10.1016/j.jaci.2015.12.1310.PubMedCrossRefGoogle Scholar
  104. 104.
    • Mousallem T, Urban TJ, McSweeney KM, Kleinstein SE, Zhu M, Adeli M, et al. Clinical application of whole-genome sequencing in patients with primary immunodeficiency. J Allergy Clin Immunol. 2015;136(2):476–9 e6.  https://doi.org/10.1016/j.jaci.2015.02.040. This report chronicles the successful application of next-generation whole genome sequencing to six patients with previously unknown (or missed) genetic diagnosis. PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    •• Stray-Pedersen A, Sorte HS, Samarakoon P, Gambin T, Chinn IK, ZHC A, et al. Primary immunodeficiency diseases: genomic approaches delineate heterogeneous Mendelian disorders. J Allergy Clin Immunol. 2017;139(1):232–45.  https://doi.org/10.1016/j.jaci.2016.05.042. This study used next-generation whole exome sequencing as well as chromosome microarray, multiplex ligation-dependent probe amplification, and data processing to assess for copy number variation to help render a diagnosis in 40% of patients with primary immunodeficiency previously lacking in a genetic diagnosis. This report highlights the benefit of using several techniques as well as robust algorithms to achieve a final diagnosis. PubMedCrossRefGoogle Scholar
  106. 106.
    Asgari S, McLaren PJ, Peake J, Wong M, Wong R, Bartha I, et al. Exome sequencing reveals primary immunodeficiencies in children with community-acquired Pseudomonas aeruginosa sepsis. Front Immunol. 2016;7:357.  https://doi.org/10.3389/fimmu.2016.00357.PubMedPubMedCentralGoogle Scholar
  107. 107.
    • Pfundt R, Del Rosario M, Vissers L, Kwint MP, Janssen IM, de Leeuw N, et al. Detection of clinically relevant copy-number variants by exome sequencing in a large cohort of genetic disorders. Genet Med. 2017;19(6):667–75.  https://doi.org/10.1038/gim.2016.163. This study used read-depth copy number variant analysis as part of whole exome screening to increase the diagnostic yield of exome screening by ~2% in the investigation of 13 categories of genetic disorders, including immunodeficiency. This study illustrates the use of specific algorithms to demonstrate how the same dataset can be mined for increased results. PubMedCrossRefGoogle Scholar
  108. 108.
    •• van Schouwenburg PA, Davenport EE, Kienzler AK, Marwah I, Wright B, Lucas M, et al. Application of whole genome and RNA sequencing to investigate the genomic landscape of common variable immunodeficiency disorders. Clin Immunol. 2015;160(2):301–14.  https://doi.org/10.1016/j.clim.2015.05.020. This study applied whole genome sequencing coupled with transcriptome profiling and pathway analysis to patients with CVID versus normal controls. The study identified a few novel genetic variants, but overall results were more consistent with a polygenic etiology for most cases of CVID. PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    • Khan S, Kuruvilla M, Hagin D, Wakeland B, Liang CY, Vishwanathan K, et al. RNA sequencing reveals the consequences of a novel insertion in dedicator of cytokinesis-8. J Allergy Clin Immunol. 2016;138(1):289–92.  https://doi.org/10.1016/j.jaci.2015.11.033. This study used next-generation exome and RNA sequencing to identify a novel mutation in DOCK8 in two siblings born to consanguineous parents. This study highlights the use of RNA sequencing in the diagnosis of PID. PubMedCrossRefGoogle Scholar
  110. 110.
    O'Donnell-Luria AH, Miller DT. A clinician’s perspective on clinical exome sequencing. Hum Genet. 2016;135(6):643–54.  https://doi.org/10.1007/s00439-016-1662-x.PubMedCrossRefGoogle Scholar
  111. 111.
    Skerka C, Chen Q, Fremeaux-Bacchi V, Roumenina LT. Complement factor H related proteins (CFHRs). Mol Immunol. 2013;56(3):170–80.  https://doi.org/10.1016/j.molimm.2013.06.001.PubMedCrossRefGoogle Scholar
  112. 112.
    •• Itan Y, Casanova JL. Novel primary immunodeficiency candidate genes predicted by the human gene connectome. Front Immunol. 2015;6:142.  https://doi.org/10.3389/fimmu.2015.00142. By using data processing techniques to look for genes predicted to be most closely connected (and biologically relevant) to 229 genes known to cause primary immunodeficiency, this study determined a candidate list of 3110 genes which may be more likely to generate a primary immunodeficiency phenotype. This list is helpful to help triage the large number of variants found on genomic analysis in the context of PIDD. PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Green RC, Berg JS, Grody WW, Kalia SS, Korf BR, Martin CL, et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med. 2013;15(7):565–74.  https://doi.org/10.1038/gim.2013.73.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    •• Kagawa R, Fujiki R, Tsumura M, Sakata S, Nishimura S, Itan Y, et al. Alanine-scanning mutagenesis of human signal transducer and activator of transcription 1 to estimate loss- or gain-of-function variants. J Allergy Clin Immunol. 2017;140(1):232–41.  https://doi.org/10.1016/j.jaci.2016.09.035. This paper highlights the utility of the alanine-scanning method in assessing functional effects of a particular location of a mutation, by individually substituting the amino acid alanine in various positions within the STAT1 protein and performing functional testing. PubMedCrossRefGoogle Scholar
  115. 115.
    •• Grodecka L, Hujova P, Kramarek M, Krsjakova T, Kovacova T, Vondraskova K, et al. Systematic analysis of splicing defects in selected primary immunodeficiencies-related genes. Clinical Immunol. 2017;180:33–44.  https://doi.org/10.1016/j.clim.2017.03.010. This study outlines an organized approach for the analysis of aberrant splicing in genetic variants of PIDD-related genes. CrossRefGoogle Scholar
  116. 116.
    • Woolfe A, Mullikin JC, Elnitski L. Genomic features defining exonic variants that modulate splicing. Genome Biol. 2010;11(2):R20.  https://doi.org/10.1186/gb-2010-11-2-r20. This study compared single-nucleotide variants known to cause altered splicing with those that do not to identify several genetic features associated with aberrant splicing, and incorporated these findings into a web-based predictive tool. PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    • Hayrapetyan A, Dencher PCD, van Leeuwen K, de Boer M, Roos D. Different unequal cross-over events between NCF1 and its pseudogenes in autosomal p47(Phox)-deficient chronic granulomatous disease. BBA-Mol Basis Dis. 2013;1832(10):1662–72.  https://doi.org/10.1016/j.bbadis.2013.05.001. This study employed multiplex ligation-dependent probe amplification to analyze gene copy number and cross-over between NCF1 and its pseudogenes in patients with p47 phox -deficient chronic granulomatous disease. At least three sites of unequal cross-over were identified. CrossRefGoogle Scholar
  118. 118.
    • Kuhns DB, Wu XL, Hsu AP, Sun D, Griffith P, Holland SM, et al. Analysis of NCF1 in patients with p47phox deficiency chronic granulomatous disease (CGD) and normal subjects by droplet digital PCR (DDPCR). J Clin Immunol. 2017;37(2):235. This study used digital droplet PCR to assess the ratio of GTGT alleles of NCF1 and was able to accurately stratify subjects into normal, carrier, and affected status. Google Scholar
  119. 119.
    • Keller M, Glessner J, Resnick E, Perez E, Chapel H, Lucas M, et al. Burden of copy number variation in common variable immunodeficiency. Clin Exp Immunol. 2014;177(1):269–71.  https://doi.org/10.1111/cei.12255. This study employed a whole genome array to assess copy number variation in CVID. It found that despite having higher copy number variation, there was no association between copy number variation in CVID and several clinical features, including age of onset, phenotype, and risk of malignancy. PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Annely M. Richardson
    • 1
  • Ann M. Moyer
    • 2
  • Linda Hasadsri
    • 2
  • Roshini S. Abraham
    • 2
  1. 1.Division of Allergic Diseases, Department of MedicineMayo ClinicRochesterUSA
  2. 2.Department of Laboratory Medicine and PathologyMayo ClinicRochesterUSA

Personalised recommendations