The Skin as a Route of Allergen Exposure: Part I. Immune Components and Mechanisms

  • Anna R. Smith
  • George Knaysi
  • Jeffrey M. Wilson
  • Julia A. Wisniewski
Allergens (RK Bush and JA Woodfolk, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Allergens


Purpose of Review

To highlight recent contributions in the literature that enhance our understanding of the cutaneous immune response to allergen.

Recent Findings

Defects in skin barrier function in infancy set the stage for the development of atopic dermatitis (AD) and allergy. Both genetic and environmental factors can contribute to damage of the stratum corneum (SC), with activation of specific protease enzymes under high pH conditions playing a key role. Immune cells and mediators in the dermis and epidermis impair SC repair mechanisms and support allergy development. In barrier-disrupted skin, type 2 innate lymphoid cells (ILC2s), mast cells (MCs), and basophils have been shown to promote AD and pathogenic Th2 responses in murine models.


Skin barrier disruption favors induction of systemic Th2-associated inflammatory pathways. A better understanding of the ontogeny and regulation of these complex networks in infant skin is needed to guide future strategies for allergy treatment and prevention.


Atopic dermatitis Epicutaneous allergy Detergent Cutaneous sensitization Skin 



Atopic dermatitis


Anti-microbial peptide


Antigen-presenting cell


Ceramide synthase


Cutaneous lymphocyte antigen


Dendritic cell


Dermal dendritic cell


Free fatty acids




House dust mite


Human papilloma virus


Inflammatory dendritic cells


Inflammatory dendritic epithelial cell


Type 2 innate lymphoid cell






Langerhans cell


Kazal-type 5 serine protease inhibitor




Mast cell


Monocyte-derived dendritic cell


Natural moisturizing factor




Protease-activated receptor-2


Stratum corneum


Stratum corneum chymotryptic enzyme


Skin-derived antileukoprotease


Sodium laureth sulfate


Serine protease inhibitor kazal-type-5


Transepithelial resistance


Transepidermal water loss


TNF and iNOS-producing DCs


Tight junction


Toll-like receptor


T regulatory cell


Thymic stromal lymphopoietin


Thymic stromal lymphopoietin receptor


Trans urocanic acid


Compliance with Ethical Standards


This work was supported by the UVA Child Health Research Grant (J.W.).

Conflict of Interest

Drs. Smith, Knaysi, Wilson, and Wisniewski declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Kondo H, Ichikawa Y, Imokawa G. Percutaneous sensitization with allergens through barrier-disrupted skin elicits a Th2-dominant cytokine response. Eur J Immunol. 1998;28:769–79. doi: 10.1002/(SICI)1521-4141(199803)28:03<769::AID-IMMU769>3.0.CO;2-H.PubMedCrossRefGoogle Scholar
  2. 2.
    Bos JD, Meinardi MM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 2000;9:165–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Woodfolk JA, Commins SP, Schuyler AJ, Erwin EA, Platts-Mills TA. Allergens, sources, particles, and molecules: why do we make IgE responses? Allergol Int. 2015;64:295–303. doi: 10.1016/j.alit.2015.06.001.PubMedCrossRefGoogle Scholar
  4. 4.
    Banerjee S et al. Der p 11 is a major allergen for house dust mite-allergic patients suffering from atopic dermatitis. J Investig Dermatol. 2015;135:102–9. doi: 10.1038/jid.2014.271.PubMedCrossRefGoogle Scholar
  5. 5.
    Escobar-Chavez JJ et al. The tape-stripping technique as a method for drug quantification in skin. J Pharm Pharm Sci. 2008;11:104–30.PubMedCrossRefGoogle Scholar
  6. 6.
    Hosomi N et al. Polymorphisms in the promoter of the interleukin-4 receptor alpha chain gene are associated with atopic dermatitis in Japan. J Investig Dermatol. 2004;122:843–5. doi: 10.1111/j.0022-202X.2004.22338.x.PubMedCrossRefGoogle Scholar
  7. 7.
    Kinoshita H et al. Cytokine milieu modulates release of thymic stromal lymphopoietin from human keratinocytes stimulated with double-stranded RNA. J Allergy Clin Immunol. 2009;123:179–86. doi: 10.1016/j.jaci.2008.10.008.PubMedCrossRefGoogle Scholar
  8. 8.
    Imai Y et al. Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis-like inflammation in mice. Proc Natl Acad Sci U S A. 2013;110:13921–6. doi: 10.1073/pnas.1307321110.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Soumelis V et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol. 2002;3:673–80. doi: 10.1038/ni805.PubMedCrossRefGoogle Scholar
  10. 10.
    Le TA et al. Inhibition of double-stranded RNA-induced TSLP in human keratinocytes by glucocorticoids. Allergy. 2009;64:1231–2. doi: 10.1111/j.1398-9995.2009.02032.x.PubMedCrossRefGoogle Scholar
  11. 11.
    Oyoshi MK, Larson RP, Ziegler SF, Geha RS. Mechanical injury polarizes skin dendritic cells to elicit a T(H)2 response by inducing cutaneous thymic stromal lymphopoietin expression. J Allergy Clin Immunol. 2010;126:976–84. doi: 10.1016/j.jaci.2010.08.041. 984 e971-975.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Yoo J et al. Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin. J Exp Med. 2005;202:541–9. doi: 10.1084/jem.20041503.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Williams H, Flohr C. How epidemiology has challenged 3 prevailing concepts about atopic dermatitis. J Allergy Clin Immunol. 2006;118:209–13. doi: 10.1016/j.jaci.2006.04.043.PubMedCrossRefGoogle Scholar
  14. 14.
    Werfel T et al. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J Allergy Clin Immunol. 2016;138:336–49. doi: 10.1016/j.jaci.2016.06.010.PubMedCrossRefGoogle Scholar
  15. 15.
    Tischer CG et al. Meta-analysis of mould and dampness exposure on asthma and allergy in eight European birth cohorts: an ENRIECO initiative. Allergy. 2011;66:1570–9. doi: 10.1111/j.1398-9995.2011.02712.x.PubMedCrossRefGoogle Scholar
  16. 16.
    Bremmer SF, Simpson EL. Dust mite avoidance for the primary prevention of atopic dermatitis: a systematic review and meta-analysis. Pediatr Allergy Immunol. 2015. doi: 10.1111/pai.12452.PubMedGoogle Scholar
  17. 17.
    Du Toit G et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. N Engl J Med. 2015;372:803–13. doi: 10.1056/NEJMoa1414850.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Castro-Rodriguez JA, Holberg CJ, Wright AL, Martinez FD. A clinical index to define risk of asthma in young children with recurrent wheezing. Am J Respir Crit Care Med. 2000;162:1403–6. doi: 10.1164/ajrccm.162.4.9912111.PubMedCrossRefGoogle Scholar
  19. 19.
    Wisniewski JA et al. Sensitization to food and inhalant allergens in relation to age and wheeze among children with atopic dermatitis. Clin Exp Allergy. 2013;43:1160–70. doi: 10.1111/cea.12169.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Thyssen JP, Kezic S. Causes of epidermal filaggrin reduction and their role in the pathogenesis of atopic dermatitis. J Allergy Clin Immunol. 2014;134:792–9. doi: 10.1016/j.jaci.2014.06.014.PubMedCrossRefGoogle Scholar
  21. 21.
    Kelleher M et al. Skin barrier dysfunction measured by transepidermal water loss at 2 days and 2 months predates and predicts atopic dermatitis at 1 year. J Allergy Clin Immunol. 2015;135:930–5. doi: 10.1016/j.jaci.2014.12.013. e931.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    •• Kelleher MM et al. Skin barrier impairment at birth predicts food allergy at 2 years of age. J Allergy Clin Immunol. 2016;137:1111. doi: 10.1016/j.jaci.2015.12.1312. Provides epidemiologic evidence that skin barrier impairment drives allergy development.PubMedCrossRefGoogle Scholar
  23. 23.
    Romani N et al. Epidermal Langerhans cells—changing views on their function in vivo. Immunol Lett. 2006;106:119–25. doi: 10.1016/j.imlet.2006.05.010.PubMedCrossRefGoogle Scholar
  24. 24.
    Novak N, Gros E, Bieber T, Allam JP. Human skin and oral mucosal dendritic cells as ‘good guys’ and ‘bad guys’ in allergic immune responses. Clin Exp Immunol. 2010;161:28–33. doi: 10.1111/j.1365-2249.2010.04162.x.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Guttman-Yassky E et al. Major differences in inflammatory dendritic cells and their products distinguish atopic dermatitis from psoriasis. J Allergy Clin Immunol. 2007;119:1210–7. doi: 10.1016/j.jaci.2007.03.006.PubMedCrossRefGoogle Scholar
  26. 26.
    • Yoshida K et al. Distinct behavior of human Langerhans cells and inflammatory dendritic epidermal cells at tight junctions in patients with atopic dermatitis. J Allergy Clin Immunol. 2014;134:856–64. doi: 10.1016/j.jaci.2014.08.001. Findings demonstrate important functional differences between the ability of Langerhans cells and inflammatory dendritic epidermal cells to uptake environmental allergens.PubMedCrossRefGoogle Scholar
  27. 27.
    Meindl S et al. Differential effects of corticosteroids and pimecrolimus on the developing skin immune system in humans and mice. J Allergy Clin Immunol. 2009;129:2184–92. doi: 10.1038/jid.2009.50.Google Scholar
  28. 28.
    Wollenberg A, Kraft S, Hanau D, Bieber T. Immunomorphological and ultrastructural characterization of Langerhans cells and a novel, inflammatory dendritic epidermal cell (IDEC) population in lesional skin of atopic eczema. J Investig Dermatol. 1996;106:446–53.PubMedCrossRefGoogle Scholar
  29. 29.
    Holm J, Willumsen N, Wurtzen PA, Christensen LH, Lund K. Facilitated antigen presentation and its inhibition by blocking IgG antibodies depends on IgE repertoire complexity. J Allergy Clin Immunol. 2011;127:1029–37. doi: 10.1016/j.jaci.2011.01.062.PubMedCrossRefGoogle Scholar
  30. 30.
    Dubrac S, Schmuth M, Ebner S. Atopic dermatitis: the role of Langerhans cells in disease pathogenesis. Immunol Cell Biol. 2010;88:400–9. doi: 10.1038/icb.2010.33.PubMedCrossRefGoogle Scholar
  31. 31.
    Phythian-Adams AT et al. CD11c depletion severely disrupts Th2 induction and development in vivo. J Exp Med. 2010;207:2089–96. doi: 10.1084/jem.20100734.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hammad H et al. Inflammatory dendritic cells—not basophils—are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J Exp Med. 2010;207:2097–111. doi: 10.1084/jem.20101563.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Novak N. An update on the role of human dendritic cells in patients with atopic dermatitis. J Allergy Clin Immunol. 2012;129:879–86. doi: 10.1016/j.jaci.2012.01.062.PubMedCrossRefGoogle Scholar
  34. 34.
    Guttman-Yassky E, Nograles KE, Krueger JG. Contrasting pathogenesis of atopic dermatitis and psoriasis—part II: immune cell subsets and therapeutic concepts. J Allergy Clin Immunol. 2011;127:1420–32. doi: 10.1016/j.jaci.2011.01.054.PubMedCrossRefGoogle Scholar
  35. 35.
    Iram N et al. Age-related changes in expression and function of Toll-like receptors in human skin. Development. 2012;139:4210–9. doi: 10.1242/dev.083477.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Clark RA et al. The vast majority of CLA+ T cells are resident in normal skin. J Immunol. 2006;176:4431–9.PubMedCrossRefGoogle Scholar
  37. 37.
    de Vries IJ et al. Nonspecific T-cell homing during inflammation in atopic dermatitis: expression of cutaneous lymphocyte-associated antigen and integrin alphaE beta7 on skin-infiltrating T cells. J Allergy Clin Immunol. 1997;100:694–701.PubMedCrossRefGoogle Scholar
  38. 38.
    Peng W, Novak N. Pathogenesis of atopic dermatitis. Clin Exp Allergy. 2015;45:566–74. doi: 10.1111/cea.12495.PubMedCrossRefGoogle Scholar
  39. 39.
    Hamilton JD, Ungar B, Guttman-Yassky E. Drug evaluation review: dupilumab in atopic dermatitis. Immunotherapy. 2015;7:1043–58. doi: 10.2217/imt.15.69.PubMedCrossRefGoogle Scholar
  40. 40.
    Reefer AJ et al. Analysis of CD25hiCD4+ “regulatory” T-cell subtypes in atopic dermatitis reveals a novel T(H)2-like population. J Allergy Clin Immunol. 2008;121:415–22. doi: 10.1016/j.jaci.2007.11.003. e413.PubMedCrossRefGoogle Scholar
  41. 41.
    Czarnowicki T et al. Early pediatric atopic dermatitis shows only a cutaneous lymphocyte antigen (CLA)(+) TH2/TH1 cell imbalance, whereas adults acquire CLA(+) TH22/TC22 cell subsets. J Allergy Clin Immunol. 2015;136:941–51. doi: 10.1016/j.jaci.2015.05.049. e943.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Reekers R, Busche M, Wittmann M, Kapp A, Werfel T. Birch pollen-related foods trigger atopic dermatitis in patients with specific cutaneous T-cell responses to birch pollen antigens. J Allergy Clin Immunol. 1999;104:466–72.PubMedCrossRefGoogle Scholar
  43. 43.
    Bonefeld CM, Geisler C. The role of innate lymphoid cells in healthy and inflamed skin. Immunol Lett. 2016. doi: 10.1016/j.imlet.2016.01.005.PubMedGoogle Scholar
  44. 44.
    Rak GD et al. IL-33-dependent group 2 innate lymphoid cells promote cutaneous wound healing. J Investig Dermatol. 2016;136:487–96. doi: 10.1038/JID.2015.406.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kim BS. Innate lymphoid cells in the skin. J Investig Dermatol. 2015;135:673–8. doi: 10.1038/jid.2014.401.PubMedCrossRefGoogle Scholar
  46. 46.
    • Roediger B et al. Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nat Immunol. 2013;14:564–73. doi: 10.1038/ni.2584. Identifies a novel role for group 2 innate lymphoid cells as an innate source of IL-5 and IL-13 in skin.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Salimi M et al. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med. 2013;210:2939–50. doi: 10.1084/jem.20130351.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Ando T et al. Mast cells are required for full expression of allergen/SEB-induced skin inflammation. J Investig Dermatol. 2013;133:2695–705. doi: 10.1038/jid.2013.250.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Ito Y et al. Basophil recruitment and activation in inflammatory skin diseases. Allergy. 2011;66:1107–13. doi: 10.1111/j.1398-9995.2011.02570.x.PubMedCrossRefGoogle Scholar
  50. 50.
    Sokol CL et al. Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat Immunol. 2009;10:713–20. doi: 10.1038/ni.1738.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Otsuka A, Kabashima K. Contribution of basophils to cutaneous immune reactions and Th2-mediated allergic responses. Front Immunol. 2015;6:393. doi: 10.3389/fimmu.2015.00393.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Noti M et al. Exposure to food allergens through inflamed skin promotes intestinal food allergy through the thymic stromal lymphopoietin-basophil axis. J Allergy Clin Immunol. 2014;133:1390–9. doi: 10.1016/j.jaci.2014.01.021. 1399 e1391-1396.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Kawakami T, Ando T, Kimura M, Wilson BS, Kawakami Y. Mast cells in atopic dermatitis. Curr Opin Immunol. 2009;21:666–78. doi: 10.1016/j.coi.2009.09.006.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Galand C et al. IL-33 promotes food anaphylaxis in epicutaneously sensitized mice by targeting mast cells. J Allergy Clin Immunol. 2016. doi: 10.1016/j.jaci.2016.03.056.Google Scholar
  55. 55.
    Morita H et al. An interleukin-33-mast cell-interleukin-2 axis suppresses papain-induced allergic inflammation by promoting regulatory T cell numbers. Immunity. 2015;43:175–86. doi: 10.1016/j.immuni.2015.06.021.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Bartnikas LM et al. Epicutaneous sensitization results in IgE-dependent intestinal mast cell expansion and food-induced anaphylaxis. J Allergy Clin Immunol. 2013;131(451–460):e451–456. doi: 10.1016/j.jaci.2012.11.032.CrossRefGoogle Scholar
  57. 57.
    van Voorst Vader PC, Lier JG, Woest TE, Coenraads PJ, Nater JP. Patch tests with house dust mite antigens in atopic dermatitis patients: methodological problems. Acta Derm Venereol. 1991;71:301–5.PubMedGoogle Scholar
  58. 58.
    Bashir SJ, Chew AL, Anigbogu A, Dreher F, Maibach HI. Physical and physiological effects of stratum corneum tape stripping. Skin Res Technol. 2001;7:40–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Eckert RL, Rorke EA. Molecular biology of keratinocyte differentiation. Environ Health Perspect. 1989;80:109–16.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Zeeuwen PL. Epidermal differentiation: the role of proteases and their inhibitors. Eur J Cell Biol. 2004;83:761–73. doi: 10.1078/0171-9335-00388.PubMedCrossRefGoogle Scholar
  61. 61.
    Cork MJ et al. New perspectives on epidermal barrier dysfunction in atopic dermatitis: gene-environment interactions. J Allergy Clin Immunol. 2006;118:3–21. doi: 10.1016/j.jaci.2006.04.042.PubMedCrossRefGoogle Scholar
  62. 62.
    Visscher M, Narendran V. The ontogeny of skin. Adv Wound Care (New Rochelle). 2014;3:291–303. doi: 10.1089/wound.2013.0467.CrossRefGoogle Scholar
  63. 63.
    Agrawal R, Woodfolk JA. Skin barrier defects in atopic dermatitis. Curr Allergy Asthma Rep. 2014;14:433. doi: 10.1007/s11882-014-0433-9.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Elias PM, Schmuth M. Abnormal skin barrier in the etiopathogenesis of atopic dermatitis. Curr Allergy Asthma Rep. 2009;9:265–72.PubMedCrossRefGoogle Scholar
  65. 65.
    Hachem JP et al. Serine protease activity and residual LEKTI expression determine phenotype in Netherton syndrome. J Investig Dermatol. 2006;126:1609–21. doi: 10.1038/sj.jid.5700288.PubMedCrossRefGoogle Scholar
  66. 66.
    Joensen UN et al. Associations of filaggrin gene loss-of-function variants with urinary phthalate metabolites and testicular function in young Danish men. Environ Health Perspect. 2014;122:345–50. doi: 10.1289/ehp.1306720.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Mukhopadhyay P. Cleansers and their role in various dermatological disorders. Indian J Dermatol. 2011;56:2–6. doi: 10.4103/0019-5154.77542.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Bikowski J. The use of cleansers as therapeutic concomitants in various dermatologic disorders. Cutis. 2001;68:12–9.PubMedGoogle Scholar
  69. 69.
    Hachem JP et al. Acute acidification of stratum corneum membrane domains using polyhydroxyl acids improves lipid processing and inhibits degradation of corneodesmosomes. J Investig Dermatol. 2010;130:500–10. doi: 10.1038/jid.2009.249.PubMedCrossRefGoogle Scholar
  70. 70.
    Gfatter R, Hackl P, Braun F. Effects of soap and detergents on skin surface pH, stratum corneum hydration and fat content in infants. Dermatology. 1997;195:258–62.PubMedCrossRefGoogle Scholar
  71. 71.
    Cetta F, Lambert GH, Ros SP. Newborn chemical exposure from over-the-counter skin care products. Clin Pediatr (Phila). 1991;30:286–9.CrossRefGoogle Scholar
  72. 72.
    Jungersted JM et al. Stratum corneum lipids, skin barrier function and filaggrin mutations in patients with atopic eczema. Allergy. 2010;65:911–8. doi: 10.1111/j.1398-9995.2010.02326.x.PubMedCrossRefGoogle Scholar
  73. 73.
    Harding CR, Aho S, Bosko CA. Filaggrin—revisited. Int J Cosmet Sci. 2013;35:412–23. doi: 10.1111/ics.12049.PubMedCrossRefGoogle Scholar
  74. 74.
    Hubiche T et al. Analysis of SPINK 5, KLK 7 and FLG genotypes in a French atopic dermatitis cohort. Acta Derm Venereol. 2007;87:499–505. doi: 10.2340/00015555-0329.PubMedCrossRefGoogle Scholar
  75. 75.
    Rabionet M, Gorgas K, Sandhoff R. Ceramide synthesis in the epidermis. Biochim Biophys Acta. 2014;1841:422–34. doi: 10.1016/j.bbalip.2013.08.011.PubMedCrossRefGoogle Scholar
  76. 76.
    Brandner JM et al. Epidermal tight junctions in health and disease. Tissue Barriers. 2015;3:e974451. doi: 10.4161/21688370.2014.974451.PubMedCrossRefGoogle Scholar
  77. 77.
    Cevc G, Vierl U. Nanotechnology and the transdermal route: a state of the art review and critical appraisal. J Control Release. 2010;141:277–99. doi: 10.1016/j.jconrel.2009.10.016.PubMedCrossRefGoogle Scholar
  78. 78.
    Hanel KH et al. Control of the physical and antimicrobial skin barrier by an IL-31-IL-1 signaling network. J Immunol. 2016;196:3233–44. doi: 10.4049/jimmunol.1402943.PubMedCrossRefGoogle Scholar
  79. 79.
    Yu HS et al. Claudin-1 polymorphism modifies the effect of mold exposure on the development of atopic dermatitis and production of IgE. J Allergy Clin Immunol. 2015;135:827-830 e825. doi: 10.1016/j.jaci.2014.10.040.
  80. 80.
    Hoeger PH, Enzmann CC. Skin physiology of the neonate and young infant: a prospective study of functional skin parameters during early infancy. Pediatr Dermatol. 2002;19:256–62.PubMedCrossRefGoogle Scholar
  81. 81.
    Stamatas GN, Nikolovski J, Mack MC, Kollias N. Infant skin physiology and development during the first years of life: a review of recent findings based on in vivo studies. Int J Cosmet Sci. 2011;33:17–24. doi: 10.1111/j.1468-2494.2010.00611.x.PubMedCrossRefGoogle Scholar
  82. 82.
    Stamatas GN, Nikolovski J, Luedtke MA, Kollias N, Wiegand BC. Infant skin microstructure assessed in vivo differs from adult skin in organization and at the cellular level. Pediatr Dermatol. 2010;27:125–31. doi: 10.1111/j.1525-1470.2009.00973.x.PubMedCrossRefGoogle Scholar
  83. 83.
    Nikolovski J, Stamatas GN, Kollias N, Wiegand BC. Barrier function and water-holding and transport properties of infant stratum corneum are different from adult and continue to develop through the first year of life. J Investig Dermatol. 2008;128:1728–36. doi: 10.1038/sj.jid.5701239.PubMedCrossRefGoogle Scholar
  84. 84.
    Telofski LS, Morello 3rd AP, Mack Correa MC, Stamatas GN. The infant skin barrier: can we preserve, protect, and enhance the barrier? Dermatol Res Pract. 2012;2012:198789. doi: 10.1155/2012/198789.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Kelleher MM et al. Newborn transepidermal water loss values: a reference dataset. Pediatr Dermatol. 2013;30:712–6. doi: 10.1111/pde.12106.PubMedCrossRefGoogle Scholar
  86. 86.
    Fluhr JW, Pfisterer S, Gloor M. Direct comparison of skin physiology in children and adults with bioengineering methods. Pediatr Dermatol. 2000;17:436–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Kikuchi K, Kobayashi H, O’Goshi K, Tagami H. Impairment of skin barrier function is not inherent in atopic dermatitis patients: a prospective study conducted in newborns. Pediatr Dermatol. 2006;23:109–13. doi: 10.1111/j.1525-1470.2006.00191.x.PubMedCrossRefGoogle Scholar
  88. 88.
    Fluhr JW et al. Infant epidermal skin physiology: adaptation after birth. Br J Dermatol. 2012;166:483–90. doi: 10.1111/j.1365-2133.2011.10659.x.PubMedCrossRefGoogle Scholar
  89. 89.
    Yosipovitch G, Maayan-Metzger A, Merlob P, Sirota L. Skin barrier properties in different body areas in neonates. Pediatrics. 2000;106:105–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Visscher MO, Chatterjee R, Munson KA, Pickens WL, Hoath SB. Changes in diapered and nondiapered infant skin over the first month of life. Pediatr Dermatol. 2000;17:45–51.PubMedCrossRefGoogle Scholar
  91. 91.
    Visscher MO et al. Vernix caseosa in neonatal adaptation. J Perinatol. 2005;25:440–6. doi: 10.1038/ Scholar
  92. 92.
    Galzote CDM, Estanislao R, Mathew N. J Am Acad Dermatol. 2007;56:AB158.Google Scholar
  93. 93.
    Hiscock H. The crying baby. Aust Fam Physician. 2006;35:680–4.PubMedGoogle Scholar
  94. 94.
    Atherton D. Maintaining healthy skin in infancy using prevention of irritant napkin dermatitis as a model. Community Pract. 2005;78:255–7.PubMedGoogle Scholar
  95. 95.
    Hunziker T, Brand CU, Kapp A, Waelti ER, Braathen LR. Increased levels of inflammatory cytokines in human skin lymph derived from sodium lauryl sulphate-induced contact dermatitis. Br J Dermatol. 1992;127:254–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Tupker RA, Pinnagoda J, Coenraads PJ, Nater JP. Evaluation of detergent-induced irritant skin reactions by visual scoring and transepidermal water loss measurement. Dermatol Clin. 1990;8:33–5.PubMedGoogle Scholar
  97. 97.
    Tupker RA, Pinnagoda J, Nater JP. The transient and cumulative effect of sodium lauryl sulphate on the epidermal barrier assessed by transepidermal water loss: inter-individual variation. Acta Derm Venereol. 1990;70:1–5.PubMedGoogle Scholar
  98. 98.
    Loffler H, Happle R. Influence of climatic conditions on the irritant patch test with sodium lauryl sulphate. Acta Derm Venereol. 2003;83:338–41.PubMedCrossRefGoogle Scholar
  99. 99.
    Loffler H, Happle R. Profile of irritant patch testing with detergents: sodium lauryl sulfate, sodium laureth sulfate and alkyl polyglucoside. Contact Dermatitis. 2003;48:26–32.PubMedCrossRefGoogle Scholar
  100. 100.
    Torma H, Lindberg M, Berne B. Skin barrier disruption by sodium lauryl sulfate-exposure alters the expressions of involucrin, transglutaminase 1, profilaggrin, and kallikreins during the repair phase in human skin in vivo. J Investig Dermatol. 2008;128:1212–9. doi: 10.1038/sj.jid.5701170.PubMedCrossRefGoogle Scholar
  101. 101.
    Simpson EL et al. Emollient enhancement of the skin barrier from birth offers effective atopic dermatitis prevention. J Allergy Clin Immunol. 2014;134:818–23. doi: 10.1016/j.jaci.2014.08.005.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Horimukai K et al. Application of moisturizer to neonates prevents development of atopic dermatitis. J Allergy Clin Immunol. 2014;134:824–30. doi: 10.1016/j.jaci.2014.07.060. e826.PubMedCrossRefGoogle Scholar
  103. 103.
    Czarnowicki T et al. Petrolatum: barrier repair and antimicrobial responses underlying this “inert” moisturizer. J Allergy Clin Immunol. 2016;137(1091–1102):e1091–1097. doi: 10.1016/j.jaci.2015.08.013.CrossRefGoogle Scholar
  104. 104.
    Tordesillas L et al. Skin exposure promotes a Th2-dependent sensitization to peanut allergens. J Clin Invest. 2014;124:4965–75. doi: 10.1172/JCI75660.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Anna R. Smith
    • 1
  • George Knaysi
    • 2
    • 3
  • Jeffrey M. Wilson
    • 1
  • Julia A. Wisniewski
    • 1
    • 4
  1. 1.Department of MedicineUniversity of Virginia School of MedicineCharlottesvilleUSA
  2. 2.Department of Public Health SciencesUniversity of Virginia School of MedicineCharlottesvilleUSA
  3. 3.Geisel School of MedicineDartmouth CollegeHanoverUSA
  4. 4.Department of PediatricsUniversity of Virginia School of MedicineCharlottesvilleUSA

Personalised recommendations