Galactose-α-1,3-Galactose: Atypical Food Allergen or Model IgE Hypersensitivity?

  • Jeffrey M. WilsonEmail author
  • Alexander J. Schuyler
  • Nikhila Schroeder
  • Thomas A. E. Platts-Mills
Allergens (RK Bush and JA Woodfolk, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Allergens


Purpose of Review

Galactose-α-1,3-galactose (α-gal) is a carbohydrate allergen with several unique characteristics. In this article, we discuss some recent advances in our understanding of the ‘alpha-gal syndrome,’ highlight data supporting the role of ticks in pathogenesis, and speculate on immune mechanisms that lead to sensitization.

Recent Findings

First described as the target of IgE in individuals suffering immediate hypersensitivity reactions to the novel anti-EGF monoclonal antibody cetuximab, it is now clear that α-gal sensitization is associated with mammalian meat allergy as well as reactions to other mammalian products. Unlike traditional IgE-mediated food allergies, reactions to α-gal often do not manifest until several hours following an exposure, although co-factors can influence the presentation. Multiple pieces of evidence, including recent work with a mouse model, point to the fact that sensitization is mediated by exposure to certain hard ticks and increasingly we are aware of its globally widespread impact.


The oligosaccharide α-gal represents a novel allergen with several unusual clinical features. It has been recognized now on multiple continents and its clinical presentation can be quite variable. Moreover, efforts to delineate the mechanisms leading to α-gal sensitization may have ramifications for our broader understanding of type 2 immunity.


Alpha-gal (α-gal) Food allergy Red meat allergy Th2 Type 2 immunity 


Compliance with Ethical Standards

Conflict of Interest

Dr. Platts-Mills reports grants from NIAID AI-20565 and support for IgE assays from Thermo-Fisher/Phadia. Drs. Wilson, Schuyler, and Schroeder declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki Declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).


NIAID AI-20565


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Galili U. The alpha-gal epitope and the anti-Gal antibody in xenotransplantation and in cancer immunotherapy. Immunol Cell Biol. 2005;83(6):674–86.CrossRefPubMedGoogle Scholar
  2. 2.
    Koike C, Uddin M, Wildman DE, Gray EA, Trucco M, Starzl TE, et al. Functionally important glycosyltransferase gain and loss during catarrhine primate emergence. Proc Natl Acad Sci U S A. 2007;104(2):559–64.CrossRefPubMedGoogle Scholar
  3. 3.
    Galili U, Mandrell RE, Hamadeh RM, Shohet SB, Griffiss JM. Interaction between human natural anti-alpha-galactosyl immunoglobulin G and bacteria of the human flora. Infect Immun. 1988;56(7):1730–7.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Rispens T, Derksen NI, Commins SP, Platts-Mills TA, Aalberse RC. IgE production to alpha-gal is accompanied by elevated levels of specific IgG1 antibodies and low amounts of IgE to blood group B. PLoS One. 2013;8(2):e55566.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sandrin MS, McKenzie IF. Gal alpha (1,3)Gal, the major xenoantigen(s) recognised in pigs by human natural antibodies. Immunol Rev. 1994;141:169–90.CrossRefPubMedGoogle Scholar
  6. 6.
    O’Neil BH, Allen R, Spigel DR, Stinchcombe TE, Moore DT, Berlin JD, et al. High incidence of cetuximab-related infusion reactions in Tennessee and North Carolina and the association with atopic history. J Clin Oncol. 2007;25(24):3644–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Chung CH, Mirakhur B, Chan E, Le QT, Berlin J, Morse M, et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med. 2008;358(11):1109–17.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Qian J, Liu T, Yang L, Daus A, Crowley R, Zhou Q. Structural characterization of N-linked oligosaccharides on monoclonal antibody cetuximab by the combination of orthogonal matrix-assisted laser desorption/ionization hybrid quadrupole-quadrupole time-of-flight tandem mass spectrometry and sequential enzymatic digestion. Anal Biochem. 2007;364(1):8–18.CrossRefPubMedGoogle Scholar
  9. 9.
    Platts-Mills TA, Schuyler AJ, Tripathi A, Commins SP. Anaphylaxis to the carbohydrate side chain alpha-gal. Immunol Allergy Clin N Am. 2015;35(2):247–60.CrossRefGoogle Scholar
  10. 10.
    Commins SP, Satinover SM, Hosen J, Mozena J, Borish L, Lewis BD, et al. Delayed anaphylaxis, angioedema, or urticaria after consumption of red meat in patients with IgE antibodies specific for galactose-alpha-1,3-galactose. J Allergy Clin Immunol. 2009;123(2):426–33.CrossRefPubMedGoogle Scholar
  11. 11.
    Commins SP, James HR, Stevens W, Pochan SL, Land MH, King C, et al. Delayed clinical and ex vivo response to mammalian meat in patients with IgE to galactose-alpha-1,3-galactose. J Allergy Clin Immunol. 2014;134(1):108–15.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Van Nunen SA, O’Connor KS, Clarke LR, Boyle RX, Fernando SL. An association between tick bite reactions and red meat allergy in humans. Med J Aust. 2009;190(9):510–1.PubMedGoogle Scholar
  13. 13.
    Jacquenet S, Moneret-Vautrin DA, Bihain BE. Mammalian meat-induced anaphylaxis: clinical relevance of anti-galactose-alpha-1,3-galactose IgE confirmed by means of skin tests to cetuximab. J Allergy Clin Immunol. 2009;124(3):603–5.CrossRefPubMedGoogle Scholar
  14. 14.
    Morisset M, Richard C, Astier C, Jacquenet S, Croizier A, Beaudouin E, et al. Anaphylaxis to pork kidney is related to IgE antibodies specific for galactose-alpha-1,3-galactose. Allergy. 2012;67(5):699–704.CrossRefPubMedGoogle Scholar
  15. 15.
    Hamsten C, Tran TA, Starkhammar M, Brauner A, Commins SP, Platts-Mills TA, et al. Red meat allergy in Sweden: association with tick sensitization and B-negative blood groups. J Allergy Clin Immunol. 2013;132(6):1431–4.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sekiya K, Fukutomi Y, Nakazawa T, Taniguchi M, Akiyama K. Delayed anaphylactic reaction to mammalian meat. J Investig Allergol Clin Immunol. 2012;22(6):446–7.PubMedGoogle Scholar
  17. 17.
    Lee JH, Kim JH, Kim TH, Kim SC. Delayed mammalian meat-induced anaphylaxis confirmed by skin test to cetuximab. J Dermatol. 2013;40(7):577–8.CrossRefPubMedGoogle Scholar
  18. 18.
    • Wickner PG, Commins SP. The first 4 central american cases of delayed meat allergy with galactose-alpha-1,3-galactose positivity clustered among field biologists in panama. J Allergy Clin Immunol. 2014;133(2):Ab212-Ab. This is the first report of α-gal syndrome in Latin America.CrossRefGoogle Scholar
  19. 19.
    Apostolovic D, Tran TA, Hamsten C, Starkhammar M, Cirkovic Velickovic T, van Hage M. Immunoproteomics of processed beef proteins reveal novel galactose-alpha-1,3-galactose-containing allergens. Allergy. 2014;69(10):1308–15.CrossRefPubMedGoogle Scholar
  20. 20.
    •• Hilger C, Fischer J, Swiontek K, Hentges F, Lehners C, Eberlein B, et al. Two galactose-alpha-1,3-galactose carrying peptidases from pork kidney mediate anaphylactogenic responses in delayed meat allergy. Allergy. 2016;71(5):711–9. These authors demonstrated inter-individual variability in IgE reactivity to α-gal laden metallopeptidases versus α-gal HSA. This finding could offer an explanation for variation in responses observed clinically.CrossRefPubMedGoogle Scholar
  21. 21.
    Du Toit G, Sayre PH, Roberts G, Sever ML, Lawson K, Bahnson HT, et al. Effect of avoidance on peanut allergy after early peanut consumption. N Engl J Med. 2016;374(15):1435–43.CrossRefPubMedGoogle Scholar
  22. 22.
    Commins SP. Invited commentary: alpha-gal allergy: tip of the iceberg to a pivotal immune response. Curr Allergy Asthma Rep. 2016;16(9):61.CrossRefPubMedGoogle Scholar
  23. 23.
    Muglia C, Kar I, Gong M, Hermes-DeSantis ER, Monteleone C. Anaphylaxis to medications containing meat byproducts in an alpha-gal sensitized individual. J Allergy Clin Immunol Pract. 2015;3(5):796–7.CrossRefPubMedGoogle Scholar
  24. 24.
    • Hawkins RB, Frischtak HL, Kron IL, Ghanta RK. Premature bioprosthetic aortic valve degeneration associated with allergy to galactose-alpha-1,3-galactose. J Card Surg. 2016;31(7):446–8. This finding suggests that screening for α-gal sensitization may have a role when considering valve replacement options; however, clearly more work is needed in this arena.CrossRefPubMedGoogle Scholar
  25. 25.
    Mozzicato SM, Tripathi A, Posthumus JB, Platts-Mills TA, Commins SP. Porcine or bovine valve replacement in 3 patients with IgE antibodies to the mammalian oligosaccharide galactose-alpha-1,3-galactose. J Allergy Clin Immunol Pract. 2014;2(5):637–8.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Maurer M, Church MK, Metz M, Starkhammar M, Hamsten C, van Hage M. Galactose-alpha-1,3-galactose allergy is not a hitherto unrecognized cause of chronic spontaneous urticaria. Int Arch Allergy Immunol. 2015;167(4):250–2.CrossRefPubMedGoogle Scholar
  27. 27.
    van Nunen S, O’Connor K, Fernando SL, Clarke LR, Boyle RX. The association between ixodes holocyclus tick bite reactions and red meat allergy. Intern Med J. 2007;39(Suppl5):A132.Google Scholar
  28. 28.
    Commins SP, James HR, Kelly LA, Pochan SL, Workman LJ, Perzanowski MS, et al. The relevance of tick bites to the production of IgE antibodies to the mammalian oligosaccharide galactose-alpha-1,3-galactose. J Allergy Clin Immunol. 2011;127(5):1286–93. e6.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Apostolovic D, Tran TA, Starkhammar M, Sanchez-Vidaurre S, Hamsten C, Van Hage M. The red meat allergy syndrome in Sweden. Allergo J Int. 2016;25(2):49–54.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Commins SP, Kelly LA, Ronmark E, James HR, Pochan SL, Peters EJ, et al. Galactose-alpha-1,3-galactose-specific IgE is associated with anaphylaxis but not asthma. Am J Respir Crit Care Med. 2012;185(7):723–30.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    • Hamsten C, Starkhammar M, Tran TA, Johansson M, Bengtsson U, Ahlen G, et al. Identification of galactose-alpha-1,3-galactose in the gastrointestinal tract of the tick Ixodes ricinus; possible relationship with red meat allergy. Allergy. 2013;68(4):549–52. The first report identifying α-gal in a tick with relevance to the α-gal syndrome.CrossRefPubMedGoogle Scholar
  32. 32.
    •• Araujo RN, Franco PF, Rodrigues H, Santos LC, McKay CS, Sanhueza CA, et al. Amblyomma sculptum tick saliva: alpha-Gal identification, antibody response and possible association with red meat allergy in Brazil. Int J Parasitol. 2016;46(3):213–20. These investigators are the first to report α-gal in tick saliva. This paper also reports that s.c. injection of saliva from A. sculptum is sufficient to induce α-gal IgE in a mouse model.CrossRefPubMedGoogle Scholar
  33. 33.
    Arkestal K, Sibanda E, Thors C, Troye-Blomberg M, Mduluza T, Valenta R, et al. Impaired allergy diagnostics among parasite-infected patients caused by IgE antibodies to the carbohydrate epitope galactose-alpha 1,3-galactose. J Allergy Clin Immunol. 2011;127(4):1024–8.CrossRefPubMedGoogle Scholar
  34. 34.
    McSorley HJ, Hewitson JP, Maizels RM. Immunomodulation by helminth parasites: defining mechanisms and mediators. Int J Parasitol. 2013;43(3–4):301–10.CrossRefPubMedGoogle Scholar
  35. 35.
    Holloway JW, Yang IA, Holgate ST. Genetics of allergic disease. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S81–94.CrossRefPubMedGoogle Scholar
  36. 36.
    Ferreira BR, Silva JS. Successive tick infestations selectively promote a T-helper 2 cytokine profile in mice. Immunology. 1999;96(3):434–9.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wikel SK, Alarcon-Chaidez FJ. Progress toward molecular characterization of ectoparasite modulation of host immunity. Vet Parasitol. 2001;101(3–4):275–87.CrossRefPubMedGoogle Scholar
  38. 38.
    Schroeder N, Eccles J, Klaffky EJ, Platts-Mills TAE. Cellular infiltrate induced by bites from the tick amblyomma americanum in subjects with or without IgE to galactose-alpha-1,3-galactose (Alpha-gal). J Allergy Clin Immunol. 2014;133(2):Ab226-Ab.CrossRefGoogle Scholar
  39. 39.
    Pulendran B, Artis D. New paradigms in type 2 immunity. Science. 2012;337(6093):431–5.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Arima M, Fukuda T. Prostaglandin D(2) and T(H)2 inflammation in the pathogenesis of bronchial asthma. Korean J Intern Med. 2011;26(1):8–18.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Barrett NA, Rahman OM, Fernandez JM, Parsons MW, Xing W, Austen KF, et al. Dectin-2 mediates Th2 immunity through the generation of cysteinyl leukotrienes. J Exp Med. 2011;208(3):593–604.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Oliveira CJ, Sa-Nunes A, Francischetti IM, Carregaro V, Anatriello E, Silva JS, et al. Deconstructing tick saliva: non-protein molecules with potent immunomodulatory properties. J Biol Chem. 2011;286(13):10960–9.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Bowman AS, Gengler CL, Surdick MR, Zhu K, Essenberg RC, Sauer JR, et al. A novel phospholipase A2 activity in saliva of the lone star tick, Amblyomma americanum (L.). Exp Parasitol. 1997;87(2):121–32.CrossRefPubMedGoogle Scholar
  44. 44.
    Preston SG, Majtan J, Kouremenou C, Rysnik O, Burger LF, Cabezas Cruz A, et al. Novel immunomodulators from hard ticks selectively reprogramme human dendritic cell responses. PLoS Pathog. 2013;9(6):e1003450.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Jin R, Greenwald A, Peterson MD, Waddell TK. Human monocytes recognize porcine endothelium via the interaction of galectin 3 and alpha-GAL. J Immunol. 2006;177(2):1289–95.CrossRefPubMedGoogle Scholar
  46. 46.
    Greenwald AG, Jin R, Waddell TK. Galectin-3-mediated xenoactivation of human monocytes. Transplantation. 2009;87(1):44–51.CrossRefPubMedGoogle Scholar
  47. 47.
    Ge XN, Bahaie NS, Kang BN, Hosseinkhani MR, Ha SG, Frenzel EM, et al. Allergen-induced airway remodeling is impaired in galectin-3-deficient mice. J Immunol. 2010;185(2):1205–14.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Chen HY, Sharma BB, Yu L, Zuberi R, Weng IC, Kawakami Y, et al. Role of galectin-3 in mast cell functions: galectin-3-deficient mast cells exhibit impaired mediator release and defective JNK expression. J Immunol. 2006;177(8):4991–7.CrossRefPubMedGoogle Scholar
  49. 49.
    Fox AT, Sasieni P, du Toit G, Syed H, Lack G. Household peanut consumption as a risk factor for the development of peanut allergy. J Allergy Clin Immunol. 2009;123(2):417–23.CrossRefPubMedGoogle Scholar
  50. 50.
    Tordesillas L, Goswami R, Benede S, Grishina G, Dunkin D, Jarvinen KM, et al. Skin exposure promotes a Th2-dependent sensitization to peanut allergens. J Clin Invest. 2014;124(11):4965–75.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Cretin N, Bracy J, Hanson K, Iacomini J. The role of T cell help in the production of antibodies specific for Gal alpha 1-3Gal. J Immunol. 2002;168(3):1479–83.CrossRefPubMedGoogle Scholar
  52. 52.
    Avci FY, Li X, Tsuji M, Kasper DL. Carbohydrates and T cells: a sweet twosome. Semin Immunol. 2013;25(2):146–51.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Wilson JM, Schuyler AJ, Tripathi A, Erwin EA, Commins SP, Platts-Mills TAE. IgG4 component allergens are preferentially increased in eosinophilic esophagitis as compared to patients with milk anaphylaxis or galactose-alpha-1,3-galactose allergy. J Allergy Clin Immunol. 2016;137(2):Ab199-Ab.CrossRefGoogle Scholar
  54. 54.
    Galli SJ, Starkl P, Marichal T, Tsai M. Mast cells and IgE in defense against venoms: possible “good side” of allergy? Allergol Int. 2016;65(1):3–15.CrossRefPubMedGoogle Scholar
  55. 55.
    Palm NW, Rosenstein RK, Medzhitov R. Allergic host defences. Nature. 2012;484(7395):465–72.CrossRefPubMedGoogle Scholar
  56. 56.
    Cabezas-Cruz A, Valdes JJ. Are ticks venomous animals? Front Zool. 2014;11:47.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Jeffrey M. Wilson
    • 1
    Email author
  • Alexander J. Schuyler
    • 1
  • Nikhila Schroeder
    • 1
  • Thomas A. E. Platts-Mills
    • 1
  1. 1.Division of Allergy, Asthma, and ImmunologyUniversity of Virginia Health SystemCharlottesvilleUSA

Personalised recommendations