Skip to main content

Advertisement

Log in

Lipid Mediators of Allergic Disease: Pathways, Treatments, and Emerging Therapeutic Targets

  • Basic and Applied Science (I Lewkowich, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Bioactive lipids are critical regulators of inflammation. Over the last 75 years, these diverse compounds have emerged as clinically-relevant mediators of allergic disease pathophysiology. Animal and human studies have demonstrated the importance of lipid mediators in the development of asthma, allergic rhinitis, urticaria, anaphylaxis, atopic dermatitis, and food allergy. Lipids are critical participants in cell signaling events which influence key physiologic (bronchoconstriction) and immune phenomena (degranulation, chemotaxis, sensitization). Lipid-mediated cellular mechanisms including: (1) formation of structural support platforms (lipid rafts) for receptor signaling complexes, (2) activation of a diverse family of G-protein coupled receptors, and (3) mediating intracellular signaling cascades by acting as second messengers. Here, we review four classes of bioactive lipids (platelet activating factor, the leukotrienes, the prostanoids, and the sphingolipids) with special emphasis on lipid synthesis pathways and signaling, atopic disease pathology, and the ongoing development of atopy treatments targeting lipid mediator pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9(2):112–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Fernandis AZ, Wenk MR. Membrane lipids as signaling molecules. Curr Opin Lipidol. 2007;18(2):121–8.

    Article  CAS  PubMed  Google Scholar 

  3. Kellaway CH, Trethewie ER. The liberation of a slow-reacting smooth muscle-stimulating substance in anaphylaxis. Q J Exp Physiol Cogn Med Sci. 1940;30(2):121–45.

    CAS  Google Scholar 

  4. Kihara Y, Gupta S, Maurya MR, Armando A, Shah I, Quehenberger O, et al. Modeling of eicosanoid fluxes reveals functional coupling between cyclooxygenases and terminal synthases. Biophys J. 2014;106(4):966–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sims K, Haynes CA, Kelly S, Allegood JC, Wang E, Momin A, et al. Kdo2-lipid A, a TLR4-specific agonist, induces de novo sphingolipid biosynthesis in RAW264.7 macrophages, which is essential for induction of autophagy. J Biol Chem. 2010;285(49):38568–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Koberlin MS, Snijder B, Heinz LX, Baumann CL, Fauster A, Vladimer GI, et al. A conserved circular network of coregulated lipids modulates innate immune responses. Cell. 2015;162(1):170–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Benveniste J. Platelet-activating factor, a new mediator of anaphylaxis and immune complex deposition from rabbit and human basophils. Nature. 1974;249(457):581–2.

    Article  CAS  PubMed  Google Scholar 

  8. Palgan K, Bartuzi Z. Platelet activating factor in allergies. Int J Immunopathol Pharmacol. 2015;28(4):584–9.

    Article  PubMed  CAS  Google Scholar 

  9. Snyder F. Platelet-activating factor: the biosynthetic and catabolic enzymes. Biochem J. 1995;305(Pt 3):689–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stafforini DM, McIntyre TM, Zimmerman GA, Prescott SM. Platelet-activating factor, a pleiotrophic mediator of physiological and pathological processes. Crit Rev Clin Lab Sci. 2003;40(6):643–72.

    Article  CAS  PubMed  Google Scholar 

  11. Zimmerman GA, McIntyre TM, Prescott SM, Stafforini DM. The platelet-activating factor signaling system and its regulators in syndromes of inflammation and thrombosis. Crit Care Med. 2002;30(5 Suppl):S294–301.

    Article  CAS  PubMed  Google Scholar 

  12. Kajiwara N, Sasaki T, Bradding P, Cruse G, Sagara H, Ohmori K, et al. Activation of human mast cells through the platelet-activating factor receptor. J Allergy Clin Immunol. 2010;125(5):1137–45. First report showing that PAF induces histamine release from lung mast cells and blood mast cells but not skin mast cells.

    Article  CAS  PubMed  Google Scholar 

  13. Kato M, Yamaguchi T, Tachibana A, Suzuki M, Izumi T, Maruyama K, et al. An atypical protein kinase C, PKC zeta, regulates human eosinophil effector functions. Immunology. 2005;116(2):193–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ruiz J, Monreal M, Sala H, Roncales J, Fiz JA, Monso E, et al. Effects of inhaled platelet activating factor on bronchial responsiveness in patients with symptomatic and asymptomatic pulmonary embolism. Chest. 1992;102(3):819–23.

    Article  CAS  PubMed  Google Scholar 

  15. Cuss FM, Dixon CM, Barnes PJ. Effects of inhaled platelet activating factor on pulmonary function and bronchial responsiveness in man. Lancet. 1986;2(8500):189–92.

    Article  CAS  PubMed  Google Scholar 

  16. Rosenberg HF, Dyer KD, Foster PS. Eosinophils: changing perspectives in health and disease. Nat Rev Immunol. 2013;13(1):9–22.

    Article  CAS  PubMed  Google Scholar 

  17. Mullol J, Bousquet J, Bachert C, Canonica GW, Gimenez-Arnau A, Kowalski ML, et al. Update on rupatadine in the management of allergic disorders. Allergy. 2015;70 Suppl 100:1–24.

    Article  CAS  PubMed  Google Scholar 

  18. Dyer KD, Percopo CM, Xie Z, Yang Z, Kim JD, Davoine F, et al. Mouse and human eosinophils degranulate in response to platelet-activating factor (PAF) and lysoPAF via a PAF-receptor-independent mechanism: evidence for a novel receptor. J Immunol. 2010;184(11):6327–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Galli SJ, Tsai M. IgE and mast cells in allergic disease. Nat Med. 2012;18(5):693–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Petersen LJ, Church MK, Skov PS. Platelet-activating factor induces histamine release from human skin mast cells in vivo, which is reduced by local nerve blockade. J Allergy Clin Immunol. 1997;99(5):640–7.

    Article  CAS  PubMed  Google Scholar 

  21. Bae R, Arteaga A, Raj JU, Ibe BO. Albuterol isomers modulate platelet-activating factor synthesis and receptor signaling in human bronchial smooth muscle cells. Int Arch Allergy Immunol. 2012;158(1):18–26.

    Article  CAS  PubMed  Google Scholar 

  22. Vadas P, Gold M, Perelman B, Liss GM, Lack G, Blyth T, et al. Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis. N Engl J Med. 2008;358(1):28–35. Important article establishing link between PAF, PAG-AH activity and anaphylaxis.

    Article  CAS  PubMed  Google Scholar 

  23. Vadas P, Perelman B, Liss G. Platelet-activating factor, histamine, and tryptase levels in human anaphylaxis. J Allergy Clin Immunol. 2013;131(1):144–9.

    Article  CAS  PubMed  Google Scholar 

  24. Srinivasan P, Bahnson BJ. Molecular model of plasma PAF acetylhydrolase-lipoprotein association: insights from the structure. Pharmaceuticals. 2010;3(3):541.

    Article  CAS  PubMed Central  Google Scholar 

  25. Bossi F, Frossi B, Radillo O, Cugno M, Tedeschi A, Riboldi P, et al. Mast cells are critically involved in serum-mediated vascular leakage in chronic urticaria beyond high-affinity IgE receptor stimulation. Allergy. 2011;66(12):1538–45.

    Article  CAS  PubMed  Google Scholar 

  26. Kasperska-Zajac A, Brzoza Z, Rogala B. Platelet activating factor as a mediator and therapeutic approach in bronchial asthma. Inflammation. 2008;31(2):112–20.

    Article  CAS  PubMed  Google Scholar 

  27. Nettis E, Delle Donne P, Di Leo E, Calogiuri GF, Ferrannini A, Vacca A. Rupatadine for the treatment of urticaria. Expert Opin Pharmacother. 2013;14(13):1807–13.

    Article  CAS  PubMed  Google Scholar 

  28. Gimenez-Arnau A, Izquierdo I, Maurer M. The use of a responder analysis to identify clinically meaningful differences in chronic urticaria patients following placebo-controlled treatment with rupatadine 10 and 20 mg. J Eur Acad Dermatol Venereol. 2009;23(9):1088–91.

    Article  CAS  PubMed  Google Scholar 

  29. Erbagci Z. The leukotriene receptor antagonist montelukast in the treatment of chronic idiopathic urticaria: a single-blind, placebo-controlled, crossover clinical study. J Allergy Clin Immunol. 2002;110(3):484–8.

    Article  CAS  PubMed  Google Scholar 

  30. Reiss TF, Chervinsky P, Dockhorn RJ, Shingo S, Seidenberg B, Edwards TB. Montelukast, a once-daily leukotriene receptor antagonist, in the treatment of chronic asthma: a multicenter, randomized, double-blind trial. Montelukast Clinical Research Study Group. Arch Intern Med. 1998;158(11):1213–20.

    Article  CAS  PubMed  Google Scholar 

  31. Miligkos M, Bannuru RR, Alkofide H, Kher SR, Schmid CH, Balk EM. Leukotriene-receptor antagonists versus placebo in the treatment of asthma in adults and adolescents: a systematic review and meta-analysis. Ann Intern Med. 2015;163(10):756–67. Meta-analysis of 50 clinical trials demonstrates efficacy of LTRAs in the treatment of asthma.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liu MC, Dube LM, Lancaster J. Acute and chronic effects of a 5-lipoxygenase inhibitor in asthma: a 6-month randomized multicenter trial. Zileuton Study Group. J Allergy Clin Immunol. 1996;98(5 Pt 1):859–71.

    Article  CAS  PubMed  Google Scholar 

  33. Singh D, Cadden P, Hunter M, Pearce Collins L, Perkins M, Pettipher R, et al. Inhibition of the asthmatic allergen challenge response by the CRTH2 antagonist OC000459. Eur Respir J. 2013;41(1):46–52.

    Article  CAS  PubMed  Google Scholar 

  34. Straumann A, Hoesli S, Bussmann C, Stuck M, Perkins M, Collins LP, et al. Anti-eosinophil activity and clinical efficacy of the CRTH2 antagonist OC000459 in eosinophilic esophagitis. Allergy. 2013;68(3):375–85.

    Article  CAS  PubMed  Google Scholar 

  35. Idzko M, Hammad H, van Nimwegen M, Kool M, Muller T, Soullie T, et al. Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function. J Clin Invest. 2006;116(11):2935–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tsuji T, Okuno S, Kuroda A, Hamazaki J, Chikami T, Sakurai S, et al. Therapeutic approach to mite-induced intractable dermatitis using novel immunomodulator FTY720 ointment (fingolimod) in NC/Nga mice. Allergol Int. 2016;65(2):172–9.

    Article  PubMed  Google Scholar 

  37. Cohen JA, Barkhof F, Comi G, Hartung HP, Khatri BO, Montalban X, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010;362(5):402–15. Double-blind clinical trial of an S1P receptor functional antagonist showing superior efficacy to standard therapy in relapsing–remitting multiple sclerosis.

    Article  CAS  PubMed  Google Scholar 

  38. Kleinjan A, van Nimwegen M, Leman K, Hoogsteden HC, Lambrecht BN. Topical treatment targeting sphingosine-1-phosphate and sphingosine lyase abrogates experimental allergic rhinitis in a murine model. Allergy. 2013;68(2):204–12.

    Article  CAS  PubMed  Google Scholar 

  39. Price MM, Oskeritzian CA, Falanga YT, Harikumar KB, Allegood JC, Alvarez SE, et al. A specific sphingosine kinase 1 inhibitor attenuates airway hyperresponsiveness and inflammation in a mast cell-dependent murine model of allergic asthma. J Allergy Clin Immunol. 2013;131(2):501–11. e1.

    Article  CAS  PubMed  Google Scholar 

  40. Gendron D, Lemay AM, Tremblay C, Lai LJ, Langlois A, Bernatchez E, et al. Treatment with a sphingosine analog after the inception of house dust mite-induced airway inflammation alleviates key features of experimental asthma. Respir Res. 2015;16:7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Dakhale GN, Shinde AT, Mahatme MS, Hiware SK, Mishra DB, Mukhi JI, et al. Clinical effectiveness and safety of cetirizine versus rupatadine in chronic spontaneous urticaria: a randomized, double-blind, 6-week trial. Int J Dermatol. 2014;53(5):643–9.

    Article  CAS  PubMed  Google Scholar 

  42. Maiti R, Jaida J, Raghavendra BN, Goud P, Ahmed I, Palani A. Rupatadine and levocetirizine in chronic idiopathic urticaria: a comparative study of efficacy and safety. J Drugs Dermatol. 2011;10(12):1444–50.

    CAS  PubMed  Google Scholar 

  43. Drazen JM, Israel E, O’Byrne PM. Treatment of asthma with drugs modifying the leukotriene pathway. N Engl J Med. 1999;340(3):197–206.

    Article  CAS  PubMed  Google Scholar 

  44. Ducharme FM, Hicks GC. Anti-leukotriene agents compared to inhaled corticosteroids in the management of recurrent and/or chronic asthma. Cochrane Database Syst Rev. 2000;3:CD002314.

    PubMed  Google Scholar 

  45. Kemp JP, Dockhorn RJ, Shapiro GG, Nguyen HH, Reiss TF, Seidenberg BC, et al. Montelukast once daily inhibits exercise-induced bronchoconstriction in 6- to 14-year-old children with asthma. J Pediatr. 1998;133(3):424–8. Double-blind multi-center cross-over study in children (6–14 years of age) showing montelukast attenuates exercise-induced bronchoconstriction.

    Article  CAS  PubMed  Google Scholar 

  46. Hsieh FH, Lam BK, Penrose JF, Austen KF, Boyce JA. T helper cell type 2 cytokines coordinately regulate immunoglobulin E-dependent cysteinyl leukotriene production by human cord blood-derived mast cells: profound induction of leukotriene C(4) synthase expression by interleukin 4. J Exp Med. 2001;193(1):123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cowburn AS, Holgate ST, Sampson AP. IL-5 increases expression of 5-lipoxygenase-activating protein and translocates 5-lipoxygenase to the nucleus in human blood eosinophils. J Immunol. 1999;163(1):456–65.

    CAS  PubMed  Google Scholar 

  48. Peters-Golden M, Gleason MM, Togias A. Cysteinyl leukotrienes: multi-functional mediators in allergic rhinitis. Clin Exp Allergy. 2006;36(6):689–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Samuelsson B, Borgeat P, Hammarstrom S, Murphy RC. Introduction of a nomenclature: leukotrienes. Prostaglandins. 1979;17(6):785–7.

    Article  CAS  PubMed  Google Scholar 

  50. Creticos PS, Peters SP, Adkinson Jr NF, Naclerio RM, Hayes EC, Norman PS, et al. Peptide leukotriene release after antigen challenge in patients sensitive to ragweed. N Engl J Med. 1984;310(25):1626–30.

    Article  CAS  PubMed  Google Scholar 

  51. Shirasaki H, Himi T. Role of cysteinyl leukotrienes in allergic rhinitis. Adv Otorhinolaryngol. 2016;77:40–5.

    PubMed  Google Scholar 

  52. Griffin M, Weiss JW, Leitch AG, McFadden Jr ER, Corey EJ, Austen KF, et al. Effects of leukotriene D on the airways in asthma. N Engl J Med. 1983;308(8):436–9.

    Article  CAS  PubMed  Google Scholar 

  53. Taylor GW, Taylor I, Black P, Maltby NH, Turner N, Fuller RW, et al. Urinary leukotriene E4 after antigen challenge and in acute asthma and allergic rhinitis. Lancet. 1989;1(8638):584–8.

    Article  CAS  PubMed  Google Scholar 

  54. Sousa AR, Parikh A, Scadding G, Corrigan CJ, Lee TH. Leukotriene-receptor expression on nasal mucosal inflammatory cells in aspirin-sensitive rhinosinusitis. N Engl J Med. 2002;347(19):1493–9.

    Article  CAS  PubMed  Google Scholar 

  55. Laidlaw TM, Boyce JA. Pathogenesis of aspirin-exacerbated respiratory disease and reactions. Immunol Allergy Clin N Am. 2013;33(2):195–210.

    Article  Google Scholar 

  56. Lam BK, Austen KF. Leukotriene C4 synthase: a pivotal enzyme in cellular biosynthesis of the cysteinyl leukotrienes. Prostaglandins Other Lipid Mediat. 2002;68-69:511–20.

    Article  CAS  PubMed  Google Scholar 

  57. Kanaoka Y, Boyce JA. Cysteinyl leukotrienes and their receptors; emerging concepts. Allergy, Asthma Immunol Res. 2014;6(4):288–95.

    Article  CAS  Google Scholar 

  58. Drazen JM, O’Brien J, Sparrow D, Weiss ST, Martins MA, Israel E, et al. Recovery of leukotriene E4 from the urine of patients with airway obstruction. Am Rev Respir Dis. 1992;146(1):104–8.

    Article  CAS  PubMed  Google Scholar 

  59. Aggarwal S, Moodley YP, Thompson PJ, Misso NL. Prostaglandin E2 and cysteinyl leukotriene concentrations in sputum: association with asthma severity and eosinophilic inflammation. Clin Exp Allergy. 2010;40(1):85–93.

    CAS  PubMed  Google Scholar 

  60. Gaber F, Daham K, Higashi A, Higashi N, Gulich A, Delin I, et al. Increased levels of cysteinyl-leukotrienes in saliva, induced sputum, urine and blood from patients with aspirin-intolerant asthma. Thorax. 2008;63(12):1076–82.

    Article  CAS  PubMed  Google Scholar 

  61. Hui Y, Cheng Y, Smalera I, Jian W, Goldhahn L, Fitzgerald GA, et al. Directed vascular expression of human cysteinyl leukotriene 2 receptor modulates endothelial permeability and systemic blood pressure. Circulation. 2004;110(21):3360–6.

    Article  CAS  PubMed  Google Scholar 

  62. Mellor EA, Frank N, Soler D, Hodge MR, Lora JM, Austen KF, et al. Expression of the type 2 receptor for cysteinyl leukotrienes (CysLT2R) by human mast cells: Functional distinction from CysLT1R. Proc Natl Acad Sci U S A. 2003;100(20):11589–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kanaoka Y, Maekawa A, Austen KF. Identification of GPR99 protein as a potential third cysteinyl leukotriene receptor with a preference for leukotriene E4 ligand. J Biol Chem. 2013;288(16):10967–72. First study to identify GPR99 as an LTE 4 receptor with nanomolar affinity and a functional role in mediating vascular leak in a murine model.

  64. Shirasaki H, Kanaizumi E, Seki N, Himi T. Leukotriene E4 induces MUC5AC release from human airway epithelial NCI-H292 cells. Allergol Int. 2015;64(2):169–74.

    Article  CAS  PubMed  Google Scholar 

  65. Crooks SW, Stockley RA. Leukotriene B4. Int J Biochem Cell Biol. 1998;30(2):173–8.

    Article  CAS  PubMed  Google Scholar 

  66. Ford-Hutchinson AW, Bray MA, Doig MV, Shipley ME, Smith MJ. Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature. 1980;286(5770):264–5.

    Article  CAS  PubMed  Google Scholar 

  67. Yokomizo T, Izumi T, Chang K, Takuwa Y, Shimizu T. A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis. Nature. 1997;387(6633):620–4.

    Article  CAS  PubMed  Google Scholar 

  68. Gelfand EW, Dakhama A. CD8+ T lymphocytes and leukotriene B4: novel interactions in the persistence and progression of asthma. J Allergy Clin Immunol. 2006;117(3):577–82.

    Article  CAS  PubMed  Google Scholar 

  69. Wenzel SE, Szefler SJ, Leung DY, Sloan SI, Rex MD, Martin RJ. Bronchoscopic evaluation of severe asthma. Persistent inflammation associated with high dose glucocorticoids. Am J Respir Crit Care Med. 1997;156(3 Pt 1):737–43.

    Article  CAS  PubMed  Google Scholar 

  70. Chaudhuri R, Norris V, Kelly K, Zhu CQ, Ambery C, Lafferty J, et al. Effects of a FLAP inhibitor, GSK2190915, in asthmatics with high sputum neutrophils. Pulm Pharmacol Ther. 2014;27(1):62–9.

    Article  CAS  PubMed  Google Scholar 

  71. Vargaftig BB, Singer M. Leukotrienes mediate murine bronchopulmonary hyperreactivity, inflammation, and part of mucosal metaplasia and tissue injury induced by recombinant murine interleukin-13. Am J Respir Cell Mol Biol. 2003;28(4):410–9.

    Article  CAS  PubMed  Google Scholar 

  72. Shin K, Hwang JJ, Kwon BI, Kheradmand F, Corry DB, Lee SH. Leukotriene enhanced allergic lung inflammation through induction of chemokine production. Clin Exp Med. 2015;15(3):233–44.

    Article  CAS  PubMed  Google Scholar 

  73. Espinosa K, Bosse Y, Stankova J, Rola-Pleszczynski M. CysLT1 receptor upregulation by TGF-beta and IL-13 is associated with bronchial smooth muscle cell proliferation in response to LTD4. J Allergy Clin Immunol. 2003;111(5):1032–40.

    Article  CAS  PubMed  Google Scholar 

  74. Johnson HG, Chinn RA, Chow AW, Bach MK, Nadel JA. Leukotriene-C4 enhances mucus production from submucosal glands in canine trachea in vivo. Int J Immunopharmacol. 1983;5(5):391–6.

    Article  CAS  PubMed  Google Scholar 

  75. Cai Y, Bjermer L, Halstensen TS. Bronchial mast cells are the dominating LTC4S-expressing cells in aspirin-tolerant asthma. Am J Respir Cell Mol Biol. 2003;29(6):683–93.

    Article  CAS  PubMed  Google Scholar 

  76. Pierzchalska M, Szabo Z, Sanak M, Soja J, Szczeklik A. Deficient prostaglandin E2 production by bronchial fibroblasts of asthmatic patients, with special reference to aspirin-induced asthma. J Allergy Clin Immunol. 2003;111(5):1041–8.

    Article  CAS  PubMed  Google Scholar 

  77. Israel E, Fischer AR, Rosenberg MA, Lilly CM, Callery JC, Shapiro J, et al. The pivotal role of 5-lipoxygenase products in the reaction of aspirin-sensitive asthmatics to aspirin. Am Rev Respir Dis. 1993;148(6 Pt 1):1447–51.

    Article  CAS  PubMed  Google Scholar 

  78. Gong Jr H, Linn WS, Terrell SL, Anderson KR, Clark KW. Anti-inflammatory and lung function effects of montelukast in asthmatic volunteers exposed to sulfur dioxide. Chest. 2001;119(2):402–8.

    Article  CAS  PubMed  Google Scholar 

  79. Kraft M, Cairns CB, Ellison MC, Pak J, Irvin C, Wenzel S. Improvements in distal lung function correlate with asthma symptoms after treatment with oral montelukast. Chest. 2006;130(6):1726–32.

    Article  CAS  PubMed  Google Scholar 

  80. Chauhan BF, Ducharme FM. Anti-leukotriene agents compared to inhaled corticosteroids in the management of recurrent and/or chronic asthma in adults and children. Cochrane Database Syst Rev. 2012;5:CD002314.

    PubMed  PubMed Central  Google Scholar 

  81. Price D, Musgrave SD, Shepstone L, Hillyer EV, Sims EJ, Gilbert RF, et al. Leukotriene antagonists as first-line or add-on asthma-controller therapy. N Engl J Med. 2011;364(18):1695–707.

    Article  CAS  PubMed  Google Scholar 

  82. Bukstein DA, Luskin AT, Bernstein A. "Real-world" effectiveness of daily controller medicine in children with mild persistent asthma. Ann Allergy Asthma Immunol. 2003;90(5):543–9.

    Article  PubMed  Google Scholar 

  83. Phipatanakul W, Greene C, Downes SJ, Cronin B, Eller TJ, Schneider LC, et al. Montelukast improves asthma control in asthmatic children maintained on inhaled corticosteroids. Ann Allergy Asthma Immunol. 2003;91(1):49–54.

    Article  CAS  PubMed  Google Scholar 

  84. Price DB, Hernandez D, Magyar P, Fiterman J, Beeh KM, James IG, et al. Randomised controlled trial of montelukast plus inhaled budesonide versus double dose inhaled budesonide in adult patients with asthma. Thorax. 2003;58(3):211–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Henderson Jr WR, Chiang GK, Tien YT, Chi EY. Reversal of allergen-induced airway remodeling by CysLT1 receptor blockade. Am J Respir Crit Care Med. 2006;173(7):718–28.

    Article  CAS  PubMed  Google Scholar 

  86. Philip G, Hustad C, Noonan G, Malice MP, Ezekowitz A, Reiss TF, et al. Reports of suicidality in clinical trials of montelukast. J Allergy Clin Immunol. 2009;124(4):691–6. e6.

    Article  CAS  PubMed  Google Scholar 

  87. Philip G, Hustad CM, Malice MP, Noonan G, Ezekowitz A, Reiss TF, et al. Analysis of behavior-related adverse experiences in clinical trials of montelukast. J Allergy Clin Immunol. 2009;124(4):699–706. e8.

    Article  CAS  PubMed  Google Scholar 

  88. Hata AN, Breyer RM. Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation. Pharmacol Ther. 2004;103(2):147–66.

    Article  CAS  PubMed  Google Scholar 

  89. McCook A, Sune K. Bergstrom. Lancet. 2004;364(9438):930.

    Article  PubMed  Google Scholar 

  90. Fajt ML, Gelhaus SL, Freeman B, Uvalle CE, Trudeau JB, Holguin F, et al. Prostaglandin D(2) pathway upregulation: relation to asthma severity, control, and TH2 inflammation. J Allergy Clin Immunol. 2013;131(6):1504–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Perry CM, McGavin JK, Culy CR, Ibbotson T. Latanoprost: an update of its use in glaucoma and ocular hypertension. Drugs Aging. 2003;20(8):597–630.

    Article  CAS  PubMed  Google Scholar 

  92. Olson DM, Ammann C. Role of the prostaglandins in labour and prostaglandin receptor inhibitors in the prevention of preterm labour. Front Biosci. 2007;12:1329–43.

    Article  CAS  PubMed  Google Scholar 

  93. Naclerio RM, Meier HL, Kagey-Sobotka A, Adkinson Jr NF, Meyers DA, Norman PS, et al. Mediator release after nasal airway challenge with allergen. Am Rev Respir Dis. 1983;128(4):597–602.

    CAS  PubMed  Google Scholar 

  94. Lewis RA, Soter NA, Diamond PT, Austen KF, Oates JA, Roberts 2nd LJ. Prostaglandin D2 generation after activation of rat and human mast cells with anti-IgE. J Immunol. 1982;129(4):1627–31.

    CAS  PubMed  Google Scholar 

  95. Shen ZJ, Esnault S, Schinzel A, Borner C, Malter JS. The peptidyl-prolyl isomerase Pin1 facilitates cytokine-induced survival of eosinophils by suppressing Bax activation. Nat Immunol. 2009;10(3):257–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pienkowski MM, Adkinson Jr NF, Plaut M, Norman PS, Lichtenstein LM. Prostaglandin D2 and histamine during the immediate and the late-phase components of allergic cutaneous responses. J Allergy Clin Immunol. 1988;82(1):95–100.

    Article  CAS  PubMed  Google Scholar 

  97. Zhang S, Wu X, Yu S. Prostaglandin D2 receptor D-type prostanoid receptor 2 mediates eosinophil trafficking into the esophagus. Dis Esophagus. 2014;27(6):601–6.

    Article  CAS  PubMed  Google Scholar 

  98. Sawyer N, Cauchon E, Chateauneuf A, Cruz RP, Nicholson DW, Metters KM, et al. Molecular pharmacology of the human prostaglandin D2 receptor, CRTH2. Br J Pharmacol. 2002;137(8):1163–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mohri I, Kadoyama K, Kanekiyo T, Sato Y, Kagitani-Shimono K, Saito Y, et al. Hematopoietic prostaglandin D synthase and DP1 receptor are selectively upregulated in microglia and astrocytes within senile plaques from human patients and in a mouse model of Alzheimer disease. J Neuropathol Exp Neurol. 2007;66(6):469–80.

    Article  CAS  PubMed  Google Scholar 

  100. Tang EH, Vanhoutte PM. Gene expression changes of prostanoid synthases in endothelial cells and prostanoid receptors in vascular smooth muscle cells caused by aging and hypertension. Physiol Genomics. 2008;32(3):409–18.

    Article  CAS  PubMed  Google Scholar 

  101. Gervais FG, Cruz RP, Chateauneuf A, Gale S, Sawyer N, Nantel F, et al. Selective modulation of chemokinesis, degranulation, and apoptosis in eosinophils through the PGD2 receptors CRTH2 and DP. J Allergy Clin Immunol. 2001;108(6):982–8.

    Article  CAS  PubMed  Google Scholar 

  102. Hammad H, de Heer HJ, Soullie T, Hoogsteden HC, Trottein F, Lambrecht BN. Prostaglandin D2 inhibits airway dendritic cell migration and function in steady state conditions by selective activation of the D prostanoid receptor 1. J Immunol. 2003;171(8):3936–40.

    Article  CAS  PubMed  Google Scholar 

  103. Tanaka K, Hirai H, Takano S, Nakamura M, Nagata K. Effects of prostaglandin D2 on helper T cell functions. Biochem Biophys Res Commun. 2004;316(4):1009–14.

    Article  CAS  PubMed  Google Scholar 

  104. Boie Y, Sawyer N, Slipetz DM, Metters KM, Abramovitz M. Molecular cloning and characterization of the human prostanoid DP receptor. J Biol Chem. 1995;270(32):18910–6.

    Article  CAS  PubMed  Google Scholar 

  105. Matsuoka T, Hirata M, Tanaka H, Takahashi Y, Murata T, Kabashima K, et al. Prostaglandin D2 as a mediator of allergic asthma. Science. 2000;287(5460):2013–7.

    Article  CAS  PubMed  Google Scholar 

  106. Wright DH, Ford-Hutchinson AW, Chadee K, Metters KM. The human prostanoid DP receptor stimulates mucin secretion in LS174T cells. Br J Pharmacol. 2000;131(8):1537–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hirai H, Tanaka K, Yoshie O, Ogawa K, Kenmotsu K, Takamori Y, et al. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med. 2001;193(2):255–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nagata K, Tanaka K, Ogawa K, Kemmotsu K, Imai T, Yoshie O, et al. Selective expression of a novel surface molecule by human Th2 cells in vivo. J Immunol. 1999;162(3):1278–86.

    CAS  PubMed  Google Scholar 

  109. Mitson-Salazar A, Yin Y, Wansley DL, Young M, Bolan H, Arceo S, et al. Hematopoietic prostaglandin D synthase defines a proeosinophilic pathogenic effector human TH2 cell subpopulation with enhanced function. J Allergy Clin Immunol. 2016;137(3):907–18. e9.

    Article  CAS  PubMed  Google Scholar 

  110. Mjosberg JM, Trifari S, Crellin NK, Peters CP, van Drunen CM, Piet B, et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol. 2011;12(11):1055–62. This report identifies a human Lin- CD127+ ILC population that is characterized by CRTH2 expression and present in the lung, gut, nasal tissue and peripheral blood.

    Article  PubMed  CAS  Google Scholar 

  111. Nussbaum JC, Van Dyken SJ, von Moltke J, Cheng LE, Mohapatra A, Molofsky AB, et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature. 2013;502(7470):245–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hall IP, Fowler AV, Gupta A, Tetzlaff K, Nivens MC, Sarno M, et al. Efficacy of BI 671800, an oral CRTH2 antagonist, in poorly controlled asthma as sole controller and in the presence of inhaled corticosteroid treatment. Pulm Pharmacol Ther. 2015;32:37–44.

    Article  CAS  PubMed  Google Scholar 

  113. Busse WW, Wenzel SE, Meltzer EO, Kerwin EM, Liu MC, Zhang N, et al. Safety and efficacy of the prostaglandin D2 receptor antagonist AMG 853 in asthmatic patients. J Allergy Clin Immunol. 2013;131(2):339–45.

    Article  CAS  PubMed  Google Scholar 

  114. Funk CD. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science. 2001;294(5548):1871–5.

    Article  CAS  PubMed  Google Scholar 

  115. Dey I, Lejeune M, Chadee K. Prostaglandin E2 receptor distribution and function in the gastrointestinal tract. Br J Pharmacol. 2006;149(6):611–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Konya V, Ullen A, Kampitsch N, Theiler A, Philipose S, Parzmair GP, et al. Endothelial E-type prostanoid 4 receptors promote barrier function and inhibit neutrophil trafficking. J Allergy Clin Immunol. 2013;131(2):532–40. Reports that EP4 receptor activation induces pulmonary microvascular endothelial barrier function and suggests EP4 receptors agonists as a potential therapeutic approach for inflammatory diseases.

    Article  CAS  PubMed  Google Scholar 

  117. Kamiyama M, Pozzi A, Yang L, DeBusk LM, Breyer RM, Lin PC. EP2, a receptor for PGE2, regulates tumor angiogenesis through direct effects on endothelial cell motility and survival. Oncogene. 2006;25(53):7019–28.

    Article  CAS  PubMed  Google Scholar 

  118. Sheng H, Shao J, Morrow JD, Beauchamp RD, DuBois RN. Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res. 1998;58(2):362–6.

    CAS  PubMed  Google Scholar 

  119. Peacock CD, Misso NL, Watkins DN, Thompson PJ. PGE 2 and dibutyryl cyclic adenosine monophosphate prolong eosinophil survival in vitro. J Allergy Clin Immunol. 1999;104(1):153–62.

    Article  CAS  PubMed  Google Scholar 

  120. Vancheri C, Mastruzzo C, Sortino MA, Crimi N. The lung as a privileged site for the beneficial actions of PGE2. Trends Immunol. 2004;25(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  121. Buckley J, Birrell MA, Maher SA, Nials AT, Clarke DL, Belvisi MG. EP4 receptor as a new target for bronchodilator therapy. Thorax. 2011;66(12):1029–35.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Luschnig-Schratl P, Sturm EM, Konya V, Philipose S, Marsche G, Frohlich E, et al. EP4 receptor stimulation down-regulates human eosinophil function. Cell Mol Life Sci. 2011;68(21):3573–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sturm EM, Parzmair GP, Radnai B, Frei RB, Sturm GJ, Hammer A, et al. Phosphoinositide-dependent protein kinase 1 (PDK1) mediates potent inhibitory effects on eosinophils. Eur J Immunol. 2015;45(5):1548–59.

    Article  CAS  PubMed  Google Scholar 

  124. Takayama K, Garcia-Cardena G, Sukhova GK, Comander J, Gimbrone Jr MA, Libby P. Prostaglandin E2 suppresses chemokine production in human macrophages through the EP4 receptor. J Biol Chem. 2002;277(46):44147–54.

    Article  CAS  PubMed  Google Scholar 

  125. Feng C, Beller EM, Bagga S, Boyce JA. Human mast cells express multiple EP receptors for prostaglandin E2 that differentially modulate activation responses. Blood. 2006;107(8):3243–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Serra-Pages M, Olivera A, Torres R, Picado C, de Mora F, Rivera J. E-prostanoid 2 receptors dampen mast cell degranulation via cAMP/PKA-mediated suppression of IgE-dependent signaling. J Leukoc Biol. 2012;92(6):1155–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Moncada S, Higgs EA, Vane JR. Human arterial and venous tissues generate prostacyclin (prostaglandin x), a potent inhibitor of platelet aggregation. Lancet. 1977;1(8001):18–20.

    Article  CAS  PubMed  Google Scholar 

  128. Weksler BB, Marcus AJ, Jaffe EA. Synthesis of prostaglandin I2 (prostacyclin) by cultured human and bovine endothelial cells. Proc Natl Acad Sci U S A. 1977;74(9):3922–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dusting GJ, Moncada S, Vane JR. Prostacyclin (PGX) is the endogenous metabolite responsible for relaxation of coronary arteries induced by arachindonic acid. Prostaglandins. 1977;13(1):3–15.

    Article  CAS  PubMed  Google Scholar 

  130. Miggin SM, Kinsella BT. Investigation of the mechanisms of G protein: effector coupling by the human and mouse prostacyclin receptors. Identification of critical species-dependent differences. J Biol Chem. 2002;277(30):27053–64.

    Article  CAS  PubMed  Google Scholar 

  131. Vane JR, Botting RM. Pharmacodynamic profile of prostacyclin. Am J Cardiol. 1995;75(3):3A–10A.

    Article  CAS  PubMed  Google Scholar 

  132. Schulman ES, Newball HH, Demers LM, Fitzpatrick FA, Adkinson Jr NF. Anaphylactic release of thromboxane A2, prostaglandin D2, and prostacyclin from human lung parenchyma. Am Rev Respir Dis. 1981;124(4):402–6.

    CAS  PubMed  Google Scholar 

  133. Takahashi Y, Tokuoka S, Masuda T, Hirano Y, Nagao M, Tanaka H, et al. Augmentation of allergic inflammation in prostanoid IP receptor deficient mice. Br J Pharmacol. 2002;137(3):315–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Olschewski H. Inhaled iloprost for the treatment of pulmonary hypertension. Eur Respir Rev. 2009;18(111):29–34.

    Article  CAS  PubMed  Google Scholar 

  135. Zhou W, Toki S, Zhang J, Goleniewksa K, Newcomb DC, Cephus JY, et al. Prostaglandin I2 signaling and inhibition of group 2 innate lymphoid cell responses. Am J Respir Crit Care Med. 2016;193(1):31–42.

    Article  PubMed  Google Scholar 

  136. Safholm J, Manson ML, Bood J, Delin I, Orre AC, Bergman P, et al. Prostaglandin E2 inhibits mast cell-dependent bronchoconstriction in human small airways through the E prostanoid subtype 2 receptor. J Allergy Clin Immunol. 2015;136(5):1232–9. Reports that activation of the EP2 receptor inhibits IgE-dependent contraction of human airways.

    Article  PubMed  CAS  Google Scholar 

  137. Kabashima K, Murata T, Tanaka H, Matsuoka T, Sakata D, Yoshida N, et al. Thromboxane A2 modulates interaction of dendritic cells and T cells and regulates acquired immunity. Nat Immunol. 2003;4(7):694–701.

    Article  CAS  PubMed  Google Scholar 

  138. Thudichum JLW. A treatise on the chemical constitution of the brain. London: Bailliere, Tindall and Cox; 1884.

    Google Scholar 

  139. Futerman AH, Hannun YA. The complex life of simple sphingolipids. EMBO Rep. 2004;5(8):777–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Maceyka M, Spiegel S. Sphingolipid metabolites in inflammatory disease. Nature. 2014;510(7503):58–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kihara A, Mitsutake S, Mizutani Y, Igarashi Y. Metabolism and biological functions of two phosphorylated sphingolipids, sphingosine 1-phosphate and ceramide 1-phosphate. Prog Lipid Res. 2007;46(2):126–44.

    Article  CAS  PubMed  Google Scholar 

  142. Gangoiti P, Camacho L, Arana L, Ouro A, Granado MH, Brizuela L, et al. Control of metabolism and signaling of simple bioactive sphingolipids: Implications in disease. Prog Lipid Res. 2010;49(4):316–34.

    Article  CAS  PubMed  Google Scholar 

  143. D’Angelo G, Capasso S, Sticco L, Russo D. Glycosphingolipids: synthesis and functions. FEBS J. 2013;280(24):6338–53.

    Article  PubMed  CAS  Google Scholar 

  144. Andreyev AY, Fahy E, Guan Z, Kelly S, Li X, McDonald JG, et al. Subcellular organelle lipidomics in TLR-4-activated macrophages. J Lipid Res. 2010;51(9):2785–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Surma MA, Klose C, Simons K. Lipid-dependent protein sorting at the trans-Golgi network. Biochim Biophys Acta. 2012;1821(8):1059–67.

    Article  CAS  PubMed  Google Scholar 

  146. Kobayashi T, Mitsuo K, Goto I. Free sphingoid bases in normal murine tissues. Eur J Biochem. 1988;172(3):747–52.

    Article  CAS  PubMed  Google Scholar 

  147. Hammad SM, Pierce JS, Soodavar F, Smith KJ, Al Gadban MM, Rembiesa B, et al. Blood sphingolipidomics in healthy humans: impact of sample collection methodology. J Lipid Res. 2010;51(10):3074–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Leidl K, Liebisch G, Richter D, Schmitz G. Mass spectrometric analysis of lipid species of human circulating blood cells. Biochim Biophys Acta. 2008;1781(10):655–64.

    Article  CAS  PubMed  Google Scholar 

  149. Vesper H, Schmelz EM, Nikolova-Karakashian MN, Dillehay DL, Lynch DV, Merrill Jr AH. Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J Nutr. 1999;129(7):1239–50.

    CAS  PubMed  Google Scholar 

  150. Breslow DK, Collins SR, Bodenmiller B, Aebersold R, Simons K, Shevchenko A, et al. Orm family proteins mediate sphingolipid homeostasis. Nature. 2010;463(7284):1048–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Siow DL, Wattenberg BW. Mammalian ORMDL proteins mediate the feedback response in ceramide biosynthesis. J Biol Chem. 2012;287(48):40198–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Pappu R, Schwab SR, Cornelissen I, Pereira JP, Regard JB, Xu Y, et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science. 2007;316(5822):295–8. Using conditional SphK1/2 knockout animals and bone marrow reconstitution studies, this paper outlines the origins and function of S1P gradients in lymph/plasma, highlighting S1P’s role in lymphocyte trafficking.

    Article  CAS  PubMed  Google Scholar 

  153. Venkataraman K, Lee YM, Michaud J, Thangada S, Ai Y, Bonkovsky HL, et al. Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ Res. 2008;102(6):669–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Christoffersen C, Obinata H, Kumaraswamy SB, Galvani S, Ahnstrom J, Sevvana M, et al. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci U S A. 2011;108(23):9613–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Taha TA, Argraves KM, Obeid LM. Sphingosine-1-phosphate receptors: receptor specificity versus functional redundancy. Biochim Biophys Acta. 2004;1682(1-3):48–55.

    Article  CAS  PubMed  Google Scholar 

  156. Rosen H, Stevens RC, Hanson M, Roberts E, Oldstone MB. Sphingosine-1-phosphate and its receptors: structure, signaling, and influence. Annu Rev Biochem. 2013;82:637–62.

    Article  CAS  PubMed  Google Scholar 

  157. Harikumar KB, Yester JW, Surace MJ, Oyeniran C, Price MM, Huang WC, et al. K63-linked polyubiquitination of transcription factor IRF1 is essential for IL-1-induced production of chemokines CXCL10 and CCL5. Nat Immunol. 2014;15(3):231–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Pettus BJ, Bielawska A, Subramanian P, Wijesinghe DS, Maceyka M, Leslie CC, et al. Ceramide 1-phosphate is a direct activator of cytosolic phospholipase A2. J Biol Chem. 2004;279(12):11320–6. Demonstrates that C1P directly binds, translocates, and activates cPLA2 leading to increased eicosanoid production.

    Article  CAS  PubMed  Google Scholar 

  159. Simanshu DK, Kamlekar RK, Wijesinghe DS, Zou X, Zhai X, Mishra SK, et al. Non-vesicular trafficking by a ceramide-1-phosphate transfer protein regulates eicosanoids. Nature. 2013;500(7463):463–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kulinski JM, Munoz-Cano R, Olivera A. Sphingosine-1-phosphate and other lipid mediators generated by mast cells as critical players in allergy and mast cell function. Eur J Pharmacol. 2016;778:56–67.

    Article  CAS  PubMed  Google Scholar 

  161. Izawa K, Yamanishi Y, Maehara A, Takahashi M, Isobe M, Ito S, et al. The receptor LMIR3 negatively regulates mast cell activation and allergic responses by binding to extracellular ceramide. Immunity. 2012;37(5):827–39.

    Article  CAS  PubMed  Google Scholar 

  162. Izawa K, Isobe M, Matsukawa T, Ito S, Maehara A, Takahashi M, et al. Sphingomyelin and ceramide are physiological ligands for human LMIR3/CD300f, inhibiting FcepsilonRI-mediated mast cell activation. J Allergy Clin Immunol. 2014;133(1):270–3. e1-7.

    Article  CAS  PubMed  Google Scholar 

  163. Wilson BS, Steinberg SL, Liederman K, Pfeiffer JR, Surviladze Z, Zhang J, et al. Markers for detergent-resistant lipid rafts occupy distinct and dynamic domains in native membranes. Mol Biol Cell. 2004;15(6):2580–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zuberbier T, Pfrommer C, Beinholzl J, Hartmann K, Ricklinkat J, Czarnetzki BM. Gangliosides enhance IgE receptor-dependent histamine and LTC4 release from human mast cells. Biochim Biophys Acta. 1995;1269(1):79–84.

    Article  PubMed  Google Scholar 

  165. Choi OH, Kim JH, Kinet JP. Calcium mobilization via sphingosine kinase in signalling by the Fc epsilon RI antigen receptor. Nature. 1996;380(6575):634–6.

    Article  CAS  PubMed  Google Scholar 

  166. Olivera A, Urtz N, Mizugishi K, Yamashita Y, Gilfillan AM, Furumoto Y, et al. IgE-dependent activation of sphingosine kinases 1 and 2 and secretion of sphingosine 1-phosphate requires Fyn kinase and contributes to mast cell responses. J Biol Chem. 2006;281(5):2515–25.

    Article  CAS  PubMed  Google Scholar 

  167. Jolly PS, Bektas M, Olivera A, Gonzalez-Espinosa C, Proia RL, Rivera J, et al. Transactivation of sphingosine-1-phosphate receptors by FcepsilonRI triggering is required for normal mast cell degranulation and chemotaxis. J Exp Med. 2004;199(7):959–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Olivera A, Dillahunt SE, Rivera J. Interrogation of sphingosine-1-phosphate receptor 2 function in vivo reveals a prominent role in the recovery from IgE and IgG-mediated anaphylaxis with minimal effect on its onset. Immunol Lett. 2013;150(1-2):89–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Dillahunt SE, Sargent JL, Suzuki R, Proia RL, Gilfillan A, Rivera J, et al. Usage of sphingosine kinase isoforms in mast cells is species and/or cell type determined. J Immunol. 2013;190(5):2058–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Price MM, Kapitonov D, Allegood J, Milstien S, Oskeritzian CA, Spiegel S. Sphingosine-1-phosphate induces development of functionally mature chymase-expressing human mast cells from hematopoietic progenitors. FASEB J. 2009;23(10):3506–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Olivera A, Kitamura Y, Wright LD, Allende ML, Chen W, Kaneko-Goto T, et al. Sphingosine-1-phosphate can promote mast cell hyper-reactivity through regulation of contactin-4 expression. J Leukoc Biol. 2013;94(5):1013–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Roviezzo F, Del Galdo F, Abbate G, Bucci M, D’Agostino B, Antunes E, et al. Human eosinophil chemotaxis and selective in vivo recruitment by sphingosine 1-phosphate. Proc Natl Acad Sci U S A. 2004;101(30):11170–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Mackle T, Gendy SS, Walsh M, McConn-Walsh R, Costello RW, Walsh MT. Role of sphingosine 1-phosphate receptor expression in eosinophils of patients with allergic rhinitis, and effect of topical nasal steroid treatment on this receptor expression. J Laryngol Otol. 2008;122(12):1309–17.

    Article  CAS  PubMed  Google Scholar 

  174. Moshkovits I, Shik D, Itan M, Karo-Atar D, Bernshtein B, Hershko AY, et al. CMRF35-like molecule 1 (CLM-1) regulates eosinophil homeostasis by suppressing cellular chemotaxis. Mucosal Immunol. 2014;7(2):292–303.

    Article  CAS  PubMed  Google Scholar 

  175. Ha SG, Ge XN, Bahaie NS, Kang BN, Rao A, Rao SP, et al. ORMDL3 promotes eosinophil trafficking and activation via regulation of integrins and CD48. Nat Commun. 2013;4:2479.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Ammit AJ, Hastie AT, Edsall LC, Hoffman RK, Amrani Y, Krymskaya VP, et al. Sphingosine 1-phosphate modulates human airway smooth muscle cell functions that promote inflammation and airway remodeling in asthma. FASEB J. 2001;15(7):1212–4.

    CAS  PubMed  Google Scholar 

  177. Trifilieff A, Fozard JR. Sphingosine-1-phosphate-induced airway hyper-reactivity in rodents is mediated by the sphingosine-1-phosphate type 3 receptor. J Pharmacol Exp Ther. 2012;342(2):399–406.

    Article  CAS  PubMed  Google Scholar 

  178. Nishiuma T, Nishimura Y, Okada T, Kuramoto E, Kotani Y, Jahangeer S, et al. Inhalation of sphingosine kinase inhibitor attenuates airway inflammation in asthmatic mouse model. Am J Physiol Lung Cell Mol Physiol. 2008;294(6):L1085–93.

    Article  CAS  PubMed  Google Scholar 

  179. Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D, Heath S, et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature. 2007;448(7152):470–3. First well-powered GWAS study to link a sphingolipid regulatory protein with increased risk for developing a common disease.

    Article  CAS  PubMed  Google Scholar 

  180. Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, et al. A large-scale, consortium-based genomewide association study of asthma. N Engl J Med. 2010;363(13):1211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Dixon AL, Liang L, Moffatt MF, Chen W, Heath S, Wong KC, et al. A genome-wide association study of global gene expression. Nat Genet. 2007;39(10):1202–7.

    Article  CAS  PubMed  Google Scholar 

  182. Verlaan DJ, Berlivet S, Hunninghake GM, Madore AM, Lariviere M, Moussette S, et al. Allele-specific chromatin remodeling in the ZPBP2/GSDMB/ORMDL3 locus associated with the risk of asthma and autoimmune disease. Am J Hum Genet. 2009;85(3):377–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Miller M, Rosenthal P, Beppu A, Mueller JL, Hoffman HM, Tam AB, et al. ORMDL3 transgenic mice have increased airway remodeling and airway responsiveness characteristic of asthma. J Immunol. 2014;192(8):3475–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Paulenda T, Draber P. The role of ORMDL proteins, guardians of cellular sphingolipids, in Asthma. Allergy. 2016.

  185. Tibboel J, Reiss I, de Jongste JC, Post M. Sphingolipids in lung growth and repair. Chest. 2014;145(1):120–8.

    Article  CAS  PubMed  Google Scholar 

  186. Petrache I, Natarajan V, Zhen L, Medler TR, Richter A, Berdyshev EV, et al. Ceramide causes pulmonary cell apoptosis and emphysema: a role for sphingolipid homeostasis in the maintenance of alveolar cells. Proc Am Thorac Soc. 2006;3(6):510.

    Article  PubMed  Google Scholar 

  187. Edukulla R, Liu B, McAlees J, Khurana-Hershey G, Wang Y-H, Lewkowich I, et al. Intratracheal Myriocin enhances allergen-induced TH2 inflammation and airway hyper-responsiveness. Immun Inflamm Dis. 2016.

  188. Petrache I, Kamocki K, Poirier C, Pewzner-Jung Y, Laviad EL, Schweitzer KS, et al. Ceramide synthases expression and role of ceramide synthase-2 in the lung: insight from human lung cells and mouse models. PLoS One. 2013;8(5):e62968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Diesner SC, Olivera A, Dillahunt S, Schultz C, Watzlawek T, Forster-Waldl E, et al. Sphingosine-kinase 1 and 2 contribute to oral sensitization and effector phase in a mouse model of food allergy. Immunol Lett. 2012;141(2):210–9.

    Article  CAS  PubMed  Google Scholar 

  190. Kurashima Y, Kunisawa J, Higuchi M, Gohda M, Ishikawa I, Takayama N, et al. Sphingosine 1-phosphate-mediated trafficking of pathogenic Th2 and mast cells for the control of food allergy. J Immunol. 2007;179(3):1577–85.

    Article  CAS  PubMed  Google Scholar 

  191. Hamanaka S, Hara M, Nishio H, Otsuka F, Suzuki A, Uchida Y. Human epidermal glucosylceramides are major precursors of stratum corneum ceramides. J Invest Dermatol. 2002;119(2):416–23.

    Article  CAS  PubMed  Google Scholar 

  192. Jungersted JM, Agner T. Eczema and ceramides: an update. Contact Dermatitis. 2013;69(2):65–71.

    Article  CAS  PubMed  Google Scholar 

  193. Imokawa G, Abe A, Jin K, Higaki Y, Kawashima M, Hidano A. Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin? J Invest Dermatol. 1991;96(4):523–6.

    Article  CAS  PubMed  Google Scholar 

  194. Di Nardo A, Wertz P, Giannetti A, Seidenari S. Ceramide and cholesterol composition of the skin of patients with atopic dermatitis. Acta Derm Venereol. 1998;78(1):27–30.

    Article  PubMed  Google Scholar 

  195. Miller DW, Koch SB, Yentzer BA, Clark AR, O’Neill JR, Fountain J, et al. An over-the-counter moisturizer is as clinically effective as, and more cost-effective than, prescription barrier creams in the treatment of children with mild-to-moderate atopic dermatitis: a randomized, controlled trial. J Drugs Dermatol. 2011;10(5):531–7.

    PubMed  Google Scholar 

  196. Jensen JM, Pfeiffer S, Witt M, Brautigam M, Neumann C, Weichenthal M, et al. Different effects of pimecrolimus and betamethasone on the skin barrier in patients with atopic dermatitis. J Allergy Clin Immunol. 2009;123(5):1124–33.

    Article  CAS  PubMed  Google Scholar 

  197. Honda T, Tokura Y, Miyachi Y, Kabashima K. Prostanoid receptors as possible targets for anti-allergic drugs: recent advances in prostanoids on allergy and immunology. Curr Drug Targets. 2010;11(12):1605–13.

    Article  CAS  PubMed  Google Scholar 

  198. Kunkel GT, Maceyka M, Milstien S, Spiegel S. Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. Nat Rev Drug Discov. 2013;12(9):688–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Supported by a Child Health Research Career Development award (NIH K12 HD028827). Special thanks to Shawna Hottinger for her editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew W. Lindsley.

Ethics declarations

Conflict of Interest

Drs. Schauberger, Peinhaupt, and Cazares declare no conflicts of interest relevant to this manuscript. Dr. Lindsley declares a Procter Scholarship Career Development Award from Cincinnati Children’s Research Foundation and an JACI Editors Faculty Development Award from the AAAAI Foundation.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Basic and Applied Science

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schauberger, E., Peinhaupt, M., Cazares, T. et al. Lipid Mediators of Allergic Disease: Pathways, Treatments, and Emerging Therapeutic Targets. Curr Allergy Asthma Rep 16, 48 (2016). https://doi.org/10.1007/s11882-016-0628-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-016-0628-3

Keywords

Navigation