Skip to main content

Asthma in Urban Children: Epidemiology, Environmental Risk Factors, and the Public Health Domain

Abstract

Asthma is the most commonly reported chronic condition of childhood in developed countries, with 6.5 million children affected in the USA. A disparate burden of childhood asthma is seen among socioeconomically disadvantaged youth, often concentrated in urban areas with high poverty rates. Host factors that predispose a child to asthma include atopy, male gender, parental history of asthma, and also race, ethnicity, and genetic and epigenetic susceptibilities. Environmental factors, such as improved hygiene, ambient air pollution, and early life exposures to microbes and aeroallergens, also influence the development of asthma. With greater than 90 % of time spent indoors, home exposures (such as cockroach, rodent, and indoor air pollution) are highly relevant for urban asthma. Morbidity reduction may require focused public health initiatives for environmental intervention in high priority risk groups and the addition of immune modulatory agents in children with poorly controlled disease.

This is a preview of subscription content, access via your institution.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Bisgaard H, Szefler S. Prevalence of asthma-like symptoms in young children. Pediatr Pulmonol. 2007;42(8):723–8.

    Article  PubMed  Google Scholar 

  2. 2.

    Akinbami LJ et al. Trends in asthma prevalence, health care use, and mortality in the United States. NCHS Data Brief. 2012;94:1–8.

    PubMed  Google Scholar 

  3. 3.

    Akinbami LJ et al. Status of childhood asthma in the United States, 1980–2007. Pediatrics. 2009;123 Suppl 3:S131–45.

    Article  PubMed  Google Scholar 

  4. 4.

    Gergen PJ, Togias A. Inner city asthma. Immunol Allergy Clin North Am. 2015;35(1):101–14.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Akinbami LJ et al. Trends in racial disparities for asthma outcomes among children 0 to 17 years, 2001–2010. J Allergy Clin Immunol. 2014;134(3):547–553.e5.

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.••

    Keet CA et al. Neighborhood poverty, urban residence, race/ethnicity, and asthma: rethinking the inner-city asthma epidemic. J Allergy Clin Immunol. 2015;135(3):655–62. Prevalence of asthma was explained by race, ethnicity, and poverty in this national epidemiologic study. Urban residence was not an independent predictor of asthma prevalence in this study, challenging the notion of an “inner-city” asthma epidemic.

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Aligne CA et al. Risk factors for pediatric asthma. Contributions of poverty, race, and urban residence. Am J Respir Crit Care Med. 2000;162(3 Pt 1):873–7.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Bloom B, Jones LI, Freeman G. Summary health statistics for U.S. children: National Health Interview Survey, 2012. Vital Health Stat. 2013;10(258):1–81.

    Google Scholar 

  9. 9.••

    Lynch SV et al. Effects of early-life exposure to allergens and bacteria on recurrent wheeze and atopy in urban children. J Allergy Clin Immunol. 2014;134(3):593–601.e12. Concomitant exposures to indoor allergens and certain bacteria during the first year of life showed a protective effect on development of wheeze and allergic sensitization in this urban birth cohort study.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Flores C et al. African ancestry is associated with asthma risk in African Americans. PLoS One. 2012;7(1):e26807.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Lara M et al. Heterogeneity of childhood asthma among Hispanic children: Puerto Rican children bear a disproportionate burden. Pediatrics. 2006;117(1):43–53.

    Article  PubMed  Google Scholar 

  12. 12.

    He H et al. Preterm birth with childhood asthma: the role of degree of prematurity and asthma definitions. Am J Respir Crit Care Med. 2015;192(4):520–3.

    Article  PubMed  Google Scholar 

  13. 13.

    Crump C et al. Risk of asthma in young adults who were born preterm: a Swedish national cohort study. Pediatrics. 2011;127(4):e913–20.

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Martin JA et al. Preterm births—United States, 2006 and 2010. MMWR Surveill Summ. 2013;62 Suppl 3:136–8.

    Google Scholar 

  15. 15.

    McAleer MA, Irvine AD. The multifunctional role of filaggrin in allergic skin disease. J Allergy Clin Immunol. 2013;131(2):280–91.

    CAS  Article  PubMed  Google Scholar 

  16. 16.•

    Ho SM. Environmental epigenetics of asthma: an update. J Allergy Clin Immunol. 2010;126(3):453–65. Epigenetic modulators are reviewed in relation to asthma, including microbes, allergens, tobacco smoke, particulate matter, air pollutants, and dietary factors.

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    London SJ, Romieu I. Gene by environment interaction in asthma. Annu Rev Public Health. 2009;30:55–80.

    Article  PubMed  Google Scholar 

  18. 18.

    Umetsu DT et al. Asthma: an epidemic of dysregulated immunity. Nat Immunol. 2002;3(8):715–20.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Gehring U et al. Levels and predictors of endotoxin in mattress dust samples from East and West German homes. Indoor Air. 2004;14(4):284–92.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Zhang Q et al. Link between environmental air pollution and allergic asthma: East meets West. J Thorac Dis. 2015;7(1):14–22.

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Ball TM et al. Siblings, day-care attendance, and the risk of asthma and wheezing during childhood. N Engl J Med. 2000;343(8):538–43.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Pacheco KA et al. Airborne endotoxin predicts symptoms in non-mouse-sensitized technicians and research scientists exposed to laboratory mice. Am J Respir Crit Care Med. 2003;167(7):983–90.

    Article  PubMed  Google Scholar 

  23. 23.

    May S, Romberger DJ, Poole JA. Respiratory health effects of large animal farming environments. J Toxicol Environ Health B Crit Rev. 2012;15(8):524–41.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Braun-Fahrlander C et al. Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med. 2002;347(12):869–77.

    Article  PubMed  Google Scholar 

  25. 25.

    Perzanowski MS et al. Endotoxin in inner-city homes: associations with wheeze and eczema in early childhood. J Allergy Clin Immunol. 2006;117(5):1082–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Thorne PS, et al. Endotoxin exposure: predictors and prevalence of associated asthma outcomes in the U.S. Am J Respir Crit Care Med. 2015.

  27. 27.

    Park JH et al. House dust endotoxin and wheeze in the first year of life. Am J Respir Crit Care Med. 2001;163(2):322–8.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Matsui EC et al. Indoor pollutant exposures modify the effect of airborne endotoxin on asthma in urban children. Am J Respir Crit Care Med. 2013;188(10):1210–5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Simpson A et al. Endotoxin exposure, CD14, and allergic disease: an interaction between genes and the environment. Am J Respir Crit Care Med. 2006;174(4):386–92.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Kim H et al. House dust bioactivities predict skin prick test reactivity for children with high risk of allergy. J Allergy Clin Immunol. 2012;129(6):1529–37.e2.

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Shim JU, et al. Flagellin suppresses experimental asthma by generating regulatory dendritic cells and T cells. J Allergy Clin Immunol. 2015.

  32. 32.

    Wilson RH et al. The Toll-like receptor 5 ligand flagellin promotes asthma by priming allergic responses to indoor allergens. Nat Med. 2012;18(11):1705–10.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Creticos PS et al. Immunotherapy with a ragweed-toll-like receptor 9 agonist vaccine for allergic rhinitis. N Engl J Med. 2006;355(14):1445–55.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Stein RT et al. Respiratory syncytial virus in early life and risk of wheeze and allergy by age 13 years. Lancet. 1999;354(9178):541–5.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Thomsen SF et al. Exploring the association between severe respiratory syncytial virus infection and asthma: a registry-based twin study. Am J Respir Crit Care Med. 2009;179(12):1091–7.

    Article  PubMed  Google Scholar 

  36. 36.

    van der Gugten AC et al. Human rhinovirus and wheezing: short and long-term associations in children. Pediatr Infect Dis J. 2013;32(8):827–33.

    PubMed  Google Scholar 

  37. 37.

    Beck AF et al. Allergen sensitization profiles in a population-based cohort of children hospitalized for asthma. Ann Am Thorac Soc. 2015;12(3):376–84.

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.•

    Morgan WJ et al. Results of a home-based environmental intervention among urban children with asthma. N Engl J Med. 2004;351(11):1068–80. A multifaceted, home based environmental intervention reduced asthma morbidity in urban children. Reductions in cockroach and dust mite allergens were closely associated with reduced asthma symptoms. Improved asthma control continued one year after the intervention and was attributed to modeled behavior changes in caregivers.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Permaul P et al. Allergens in urban schools and homes of children with asthma. Pediatr Allergy Immunol. 2012;23(6):543–9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Turyk M et al. Environmental allergens and asthma morbidity in low-income children. J Asthma. 2006;43(6):453–7.

    Article  PubMed  Google Scholar 

  41. 41.

    Gruchalla RS et al. Inner City Asthma Study: relationships among sensitivity, allergen exposure, and asthma morbidity. J Allergy Clin Immunol. 2005;115(3):478–85.

    Article  PubMed  Google Scholar 

  42. 42.

    Kanchongkittiphon W et al. Indoor environmental exposures and exacerbation of asthma: an update to the 2000 review by the Institute of Medicine. Environ Health Perspect. 2015;123(1):6–20.

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Torjusen EN et al. Dose–response relationships between mouse allergen exposure and asthma morbidity among urban children and adolescents. Indoor Air. 2013;23(4):268–74.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Rosenstreich DL et al. The role of cockroach allergy and exposure to cockroach allergen in causing morbidity among inner-city children with asthma. N Engl J Med. 1997;336(19):1356–63.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Phipatanakul W et al. Mouse allergen. I. The prevalence of mouse allergen in inner-city homes. The National Cooperative Inner-City Asthma Study. J Allergy Clin Immunol. 2000;106(6):1070–4.

    CAS  Article  PubMed  Google Scholar 

  46. 46.•

    Pongracic JA et al. Effect of mouse allergen and rodent environmental intervention on asthma in inner-city children. Ann Allergy Asthma Immunol. 2008;101(1):35–41. Mouse allergen exposure is an independent risk factor for asthma morbidity in urban children. A rodent-specific home intervention reduced asthma related sleep and activity disturbance.

    Article  PubMed  Google Scholar 

  47. 47.

    Olmedo O et al. Neighborhood differences in exposure and sensitization to cockroach, mouse, dust mite, cat, and dog allergens in New York City. J Allergy Clin Immunol. 2011;128(2):284–292.e7.

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Matsui EC et al. Household mouse allergen exposure and asthma morbidity in inner-city preschool children. Ann Allergy Asthma Immunol. 2006;97(4):514–20.

    Article  PubMed  Google Scholar 

  49. 49.

    Ahluwalia SK et al. Mouse allergen is the major allergen of public health relevance in Baltimore City. J Allergy Clin Immunol. 2013;132(4):830–5.e1-2.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Litonjua AA et al. A longitudinal analysis of wheezing in young children: the independent effects of early life exposure to house dust endotoxin, allergens, and pets. J Allergy Clin Immunol. 2002;110(5):736–42.

    Article  PubMed  Google Scholar 

  51. 51.

    Litonjua AA et al. Exposure to cockroach allergen in the home is associated with incident doctor-diagnosed asthma and recurrent wheezing. J Allergy Clin Immunol. 2001;107(1):41–7.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Butz AM et al. Factors associated with high short-acting beta2-agonist use in urban children with asthma. Ann Allergy Asthma Immunol. 2015;114(5):385–92.

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    McCormack MC et al. In-home particle concentrations and childhood asthma morbidity. Environ Health Perspect. 2009;117(2):294–8.

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Butz AM et al. Factors associated with second-hand smoke exposure in young inner-city children with asthma. J Asthma. 2011;48(5):449–57.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Halterman JS et al. Screening for environmental tobacco smoke exposure among inner-city children with asthma. Pediatrics. 2008;122(6):1277–83.

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Tong VT et al. Trends in smoking before, during, and after pregnancy—Pregnancy Risk Assessment Monitoring System, United States, 40 sites, 2000–2010. MMWR Surveill Summ. 2013;62(6):1–19.

    PubMed  Google Scholar 

  57. 57.

    Howrylak JA et al. Cotinine in children admitted for asthma and readmission. Pediatrics. 2014;133(2):e355–62.

    Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Burke H et al. Prenatal and passive smoke exposure and incidence of asthma and wheeze: systematic review and meta-analysis. Pediatrics. 2012;129(4):735–44.

    Article  PubMed  Google Scholar 

  59. 59.

    Lodge CJ et al. Early-life risk factors for childhood wheeze phenotypes in a high-risk birth cohort. J Pediatr. 2014;164(2):289–94.e1-2.

    Article  PubMed  Google Scholar 

  60. 60.

    Gibbs K, Collaco JM, McGrath-Morrow SA. Impact of tobacco smoke and nicotine exposure on lung development. Chest. 2015.

  61. 61.

    Maritz GS, Harding R. Life-long programming implications of exposure to tobacco smoking and nicotine before and soon after birth: evidence for altered lung development. Int J Environ Res Public Health. 2011;8(3):875–98.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    El Marroun H, et al. Prenatal cannabis and tobacco exposure in relation to brain morphology: a prospective neuroimaging study in young children. Biol Psychiatry. 2015.

  63. 63.

    Akinbami LJ, Kit BK, Simon AE. Impact of environmental tobacco smoke on children with asthma, United States, 2003–2010. Acad Pediatr. 2013;13(6):508–16.

    Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Chilmonczyk BA et al. Association between exposure to environmental tobacco smoke and exacerbations of asthma in children. N Engl J Med. 1993;328(23):1665–9.

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Morkjaroenpong V et al. Environmental tobacco smoke exposure and nocturnal symptoms among inner-city children with asthma. J Allergy Clin Immunol. 2002;110(1):147–53.

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Lazarus SC et al. Smoking affects response to inhaled corticosteroids or leukotriene receptor antagonists in asthma. Am J Respir Crit Care Med. 2007;175(8):783–90.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Mackay D et al. Smoke-free legislation and hospitalizations for childhood asthma. N Engl J Med. 2010;363(12):1139–45.

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Kattan M et al. Health effects of indoor nitrogen dioxide and passive smoking on urban asthmatic children. J Allergy Clin Immunol. 2007;120(3):618–24.

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Hansel NN et al. A longitudinal study of indoor nitrogen dioxide levels and respiratory symptoms in inner-city children with asthma. Environ Health Perspect. 2008;116(10):1428–32.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Zota A et al. Ventilation in public housing: implications for indoor nitrogen dioxide concentrations. Indoor Air. 2005;15(6):393–401.

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Pilotto LS et al. Randomized controlled trial of unflued gas heater replacement on respiratory health of asthmatic schoolchildren. Int J Epidemiol. 2004;33(1):208–14.

    Article  PubMed  Google Scholar 

  72. 72.••

    Guarnieri M, Balmes JR. Outdoor air pollution and asthma. Lancet. 2014;383(9928):1581–92. An informative review on the current evidence relating air pollution exposures and asthma outcomes, that also addresses future policy and research direction.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Urman R et al. Associations of children’s lung function with ambient air pollution: joint effects of regional and near-roadway pollutants. Thorax. 2014;69(6):540–7.

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Gauderman WJ et al. Effect of exposure to traffic on lung development from 10 to 18 years of age: a cohort study. Lancet. 2007;369(9561):571–7.

    Article  PubMed  Google Scholar 

  75. 75.•

    Gauderman WJ et al. Association of improved air quality with lung development in children. N Engl J Med. 2015;372(10):905–13. Improved air quality over two decades in southern California from vehicle emission control resulted in clinically and statistically significant improvements in childhood lung-function.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Islam T et al. Relationship between air pollution, lung function and asthma in adolescents. Thorax. 2007;62(11):957–63.

    Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Li S et al. Asthma exacerbation and proximity of residence to major roads: a population-based matched case–control study among the pediatric Medicaid population in Detroit. Michigan Environ Health. 2011;10:34.

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    Patel MM et al. Traffic density and stationary sources of air pollution associated with wheeze, asthma, and immunoglobulin E from birth to age 5 years among New York City children. Environ Res. 2011;111(8):1222–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Ierodiakonou D, et al. Ambient air pollution, lung function, and airway responsiveness in asthmatic children. J Allergy Clin Immunol. 2015.

  80. 80.

    Schildcrout JS et al. Ambient air pollution and asthma exacerbations in children: an eight-city analysis. Am J Epidemiol. 2006;164(6):505–17.

    Article  PubMed  Google Scholar 

  81. 81.

    Akinbami LJ et al. The association between childhood asthma prevalence and monitored air pollutants in metropolitan areas, United States, 2001–2004. Environ Res. 2010;110(3):294–301.

    CAS  Article  PubMed  Google Scholar 

  82. 82.

    Kim BJ et al. Association of ozone exposure with asthma, allergic rhinitis, and allergic sensitization. Ann Allergy Asthma Immunol. 2011;107(3):214–9 e1.

    CAS  Article  PubMed  Google Scholar 

  83. 83.••

    Szefler SJ et al. Achieving asthma control in the inner city: do the National Institutes of Health Asthma Guidelines really work? J Allergy Clin Immunol. 2010;125(3):521–6; quiz 527–8. Systematically applied guidelines based therapy improved asthma control in urban children over the course of a 1-year treatment period.

    Article  PubMed  Google Scholar 

  84. 84.

    Gergen PJ et al. Results of the National Cooperative Inner-City Asthma Study (NCICAS) environmental intervention to reduce cockroach allergen exposure in inner-city homes. J Allergy Clin Immunol. 1999;103(3 Pt 1):501–6.

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    Phipatanakul W et al. Effect of environmental intervention on mouse allergen levels in homes of inner-city Boston children with asthma. Ann Allergy Asthma Immunol. 2004;92(4):420–5.

    Article  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Eggleston PA et al. Home environmental intervention in inner-city asthma: a randomized controlled clinical trial. Ann Allergy Asthma Immunol. 2005;95(6):518–24.

    Article  PubMed  Google Scholar 

  87. 87.•

    Busse WW et al. Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. N Engl J Med. 2011;364(11):1005–15. Omalizumab improved asthma control, and nearly eliminated seasonal flares in asthma, when added to guidelines based therapy in urban children, adolescents and young adults with asthma.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Teach SJ, et al. Preseasonal treatment with either omalizumab or an inhaled corticosteroid boost to prevent fall asthma exacerbations. J Allergy Clin Immunol. 2015.

  89. 89.

    Butz AM et al. Seasonal patterns of controller and rescue medication dispensed in underserved children with asthma. J Asthma. 2008;45(9):800–6.

    Article  PubMed  Google Scholar 

  90. 90.

    Johnston NW et al. The September epidemic of asthma exacerbations in children: a search for etiology. J Allergy Clin Immunol. 2005;115(1):132–8.

    Article  PubMed  Google Scholar 

  91. 91.

    Brook RD et al. Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation. 2004;109(21):2655–71.

    Article  PubMed  Google Scholar 

  92. 92.

    Nitrogen dioxide. In: NIOSH Publications and Products. 1994. www.cdc.gov/niosh/idlh/10102440.html . Accessed December 4, 2015

  93. 93.

    American Academy of Allergy, Asthma & Immunology. 2015. www.aaaai.org/conditions-and-treatments/library/at-a-glance/indoor-allergens.aspx. Accessed 16 Dec 2015

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hemant Sharma.

Ethics declarations

Conflict of Interest

Drs. Milligan and Sharma declare no conflicts of interest. Dr. Matsui reports personal fees from Environmental Defense Fund, from Church and Dwight; grants from Inspirotec LLC and from ThermoFisher, LLC; and non-financial support from Rabbit Air and from CleanBrands, LLC.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Allergens

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Milligan, K.L., Matsui, E. & Sharma, H. Asthma in Urban Children: Epidemiology, Environmental Risk Factors, and the Public Health Domain. Curr Allergy Asthma Rep 16, 33 (2016). https://doi.org/10.1007/s11882-016-0609-6

Download citation

Keywords

  • Asthma
  • Asthma and urban children
  • Asthma in inner-city
  • Asthma and poverty
  • Asthma and environment