Immune-Microbiota Interactions: Dysbiosis as a Global Health Issue

  • Alan C. Logan
  • Felice N. Jacka
  • Susan L. PrescottEmail author
Immune Deficiency and Dysregulation (DP Houston and C Kuo, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Immune Deficiency and Dysregulation


Throughout evolution, microbial genes and metabolites have become integral to virtually all aspects of host physiology, metabolism and even behaviour. New technologies are revealing sophisticated ways in which microbial communities interface with the immune system, and how modern environmental changes may be contributing to the rapid rise of inflammatory noncommunicable diseases (NCDs) through declining biodiversity. The implications of the microbiome extend to virtually every branch of medicine, biopsychosocial and environmental sciences. Similarly, the impact of changes at the immune-microbiota interface are directly relevant to broader discussions concerning rapid urbanization, antibiotics, agricultural practices, environmental pollutants, highly processed foods/beverages and socioeconomic disparities—all implicated in the NCD pandemic. Here, we make the argument that dysbiosis (life in distress) is ongoing at a micro- and macro-scale and that as a central conduit of health and disease, the immune system and its interface with microbiota is a critical target in overcoming the health challenges of the twenty-first century.


Microbiome Immune development Allergic disease Obesity Neurodevelopment Probiotics Early-life nutrition Pregnancy 


Compliance with Ethical Standards

Conflict of Interest

Dr. Prescott declares that she is in the Scientific Advisory Boards of Danone and the Nestle Nutrition Institute. Dr. Logan declares consulting fees from Genuine Health. Dr. Jacka reports no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14.CrossRefGoogle Scholar
  2. 2.
    Ramakrishna BS. Role of the gut microbiota in human nutrition and metabolism. J Gastroenterol Hepatol. 2013;28 Suppl 4:9–17.CrossRefPubMedGoogle Scholar
  3. 3.
    Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8787–803.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Dubos R. Man adapting. New Haven: Yale University Press; 1965.Google Scholar
  5. 5.
    Dubos R, Savage D, Schaedler R. Biological Freudianism. Lasting effects of early environmental influences. Pediatrics. 1966;38(5):789–800.PubMedGoogle Scholar
  6. 6.
    Pearce N, Ebrahim S, McKee M, Lamptey P, Barreto ML, Matheson D, et al. Global prevention and control of NCDs: limitations of the standard approach. J Public Health Policy. 2015;36(4):408–25.CrossRefPubMedGoogle Scholar
  7. 7.
    Trojan TD, Khan DA, Defina LF, Akpotaire O, Goodwin RD, Brown ES. Asthma and depression: the Cooper Center Longitudinal Study. Ann Allergy Asthma Immunol. 2014;112(5):432–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Prescott SL. Early-life environmental determinants of allergic diseases and the wider pandemic of inflammatory noncommunicable diseases. J Allergy Clin Immunol. 2013;131(1):23–30.CrossRefPubMedGoogle Scholar
  9. 9.••
    West CE, Renz H, Jenmalm MC, Kozyrskyj AL, Allen KJ, Vuillermin P, et al. The gut microbiota and inflammatory noncommunicable diseases: associations and potentials for gut microbiota therapies. J Allergy Clin Immunol. 2015;135(1):3–13. A recent summary of the multisystem implications of dysbiosis on long-term health and the particular importance of establishment of the microbiota in early life.CrossRefPubMedGoogle Scholar
  10. 10.
    Rook GA. Regulation of the immune system by biodiversity from the natural environment: an ecosystem service essential to health. Proc Natl Acad Sci U S A. 2013;110(46):18360–7.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Relman D. The human microbiome and the future practice of medicine. JAMA. 2015;314(11):1127–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Fugmann SD. The origins of the RAG genes—from transposition to V(D)J recombination. Semin Immunol. 2010;22:10–6.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Rebollo R, Horard B, Hubert B, Vieira C. Jumping genes and epigenetics: towards new species. Gene. 2010;454:1–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Zeh DW, Zeh JA, Ishida Y. Transposable elements and an epigenetic basis for punctuated equilibria. Bioessays. 2009;31:715–26.CrossRefPubMedGoogle Scholar
  15. 15.
    Slotkin RK, Martienssen R. Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet. 2007;8(4):272–85.CrossRefPubMedGoogle Scholar
  16. 16.
    Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268–73.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Salvucci E. Microbiome, holobiont and the net of life. Crit Rev Microbiol. 2014;28:1–10.CrossRefGoogle Scholar
  18. 18.
    Weaver CT, Hatton RD. Interplay between the TH17 and TReg cell lineages: a (co-)evolutionary perspective. Nat Rev Immunol. 2009;9(12):883–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Prescott S, Macaubas C, Smallacombe T, Holt B, Sly P, Loh R, et al. Development of allergen-specific T-cell memory in atopic and normal children. Lancet. 1999;353(9148):196–200.CrossRefPubMedGoogle Scholar
  20. 20.
    Tulic MK, Hodder M, Forsberg A, McCarthy S, Richman T, D’Vaz N, et al. Differences in innate immune function between allergic and nonallergic children: new insights into immune ontogeny. J Allergy Clin Immunol. 2011;127:470–8. e1.CrossRefPubMedGoogle Scholar
  21. 21.
    Tulic MK, Andrews D, Crook ML, Charles A, Tourigny MR, Moqbel R, et al. Changes in thymic regulatory T-cell maturation from birth to puberty: differences in atopic children. J Allergy Clin Immunol. 2012;129:199–206. e1-4.CrossRefPubMedGoogle Scholar
  22. 22.
    Prescott S, Macaubas C, Holt B, Smallacombe T, Loh R, Sly P, et al. Transplacental priming of the human immune system to environmental allergens: universal skewing of initial T-cell responses towards Th-2 cytokine profile. J Immunol. 1998;160:4730–7.PubMedGoogle Scholar
  23. 23.
    West CE, Jenmalm MC, Prescott SL. The gut microbiota and its role in the development of allergic disease: a wider perspective. Clin Exp Allergy. 2015;45:43–53.CrossRefPubMedGoogle Scholar
  24. 24.
    Schaub B, Liu J, Hoppler S, Schleich I, Huehn J, Olek S, et al. Maternal farm exposure modulates neonatal immune mechanisms through regulatory T cells. J Allergy Clin Immunol. 2009;123:774–82. e5.CrossRefPubMedGoogle Scholar
  25. 25.
    Riedler J, Eder W, Oberfeld G, Schreuer M. Austrian children living on a farm have less hay fever, asthma and allergic sensitization. Clin Exp Allergy. 2000;30:194–200.CrossRefPubMedGoogle Scholar
  26. 26.
    Ege MJ, Bieli C, Frei R, van Strien RT, Riedler J, Ublagger E, et al. Prenatal farm exposure is related to the expression of receptors of the innate immunity and to atopic sensitization in school-age children. J Allergy Clin Immunol. 2006;117:817–23.CrossRefPubMedGoogle Scholar
  27. 27.
    Wlasiuk G, Vercelli D. The farm effect, or: when, what and how a farming environment protects from asthma and allergic disease. Curr Opin Allergy Clin Immunol. 2012;12:461–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Michel S, Busato F, Genuneit J, Pekkanen J, Dalphin JC, Riedler J, et al. Farm exposure and time trends in early childhood may influence DNA methylation in genes related to asthma and allergy. Allergy. 2013;68(3):355–64.CrossRefPubMedGoogle Scholar
  29. 29.
    Lluis A, Depner M, Gaugler B, Saas P, Casaca VI, Raedler D, et al. Increased regulatory T-cell numbers are associated with farm milk exposure and lower atopic sensitization and asthma in childhood. J Allergy Clin Immunol. 2014;133:551–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Abrahamsson TR, Jakobsson HE, Andersson AF, Bjorksten B, Engstrand L, Jenmalm MC. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol. 2012;129:434–40. 40 e1-2.CrossRefPubMedGoogle Scholar
  31. 31.
    Abrahamsson TR, Jakobsson HE, Andersson AF, Bjorksten B, Engstrand L, Jenmalm MC. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy. 2014;44:842–50.CrossRefPubMedGoogle Scholar
  32. 32.
    Blumer N, Herz U, Wegmann M, Renz H. Prenatal lipopolysaccharide-exposure prevents allergic sensitisation and airway inflammation, but not airway responsiveness in a murine model of experimental asthma. Clin Exp Allergy. 2005;35:397–402.CrossRefPubMedGoogle Scholar
  33. 33.
    Blumer N, Sel S, Virna S, Patrascan CC, Zimmermann S, Herz U, et al. Perinatal maternal application of Lactobacillus rhamnosus GG suppresses allergic airway inflammation in mouse offspring. Clin Exp Allergy. 2007;37:348–57.CrossRefPubMedGoogle Scholar
  34. 34.
    Conrad ML, Ferstl R, Teich R, Brand S, Blumer N, Yildirim AO, et al. Maternal TLR signaling is required for prenatal asthma protection by the nonpathogenic microbe Acinetobacter lwoffii F78. J Exp Med. 2009;206:2869–77.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Brand S, Teich R, Dicke T, Harb H, Yildirim AO, Tost J, et al. Epigenetic regulation in murine offspring as a novel mechanism for transmaternal asthma protection induced by microbes. J Allergy Clin Immunol. 2011;128:618–25. e1-7.CrossRefPubMedGoogle Scholar
  36. 36.
    Rautava S, Collado MC, Salminen S, Isolauri E. Probiotics modulate host-microbe interaction in the placenta and fetal gut: a randomized, double-blind, placebo-controlled trial. Neonatology. 2012;102:178–84.CrossRefPubMedGoogle Scholar
  37. 37.••
    Thorburn AN, McKenzie CI, Shen S, Stanley D, Macia L, Mason LJ, et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat Commun. 2015;6:7320. An elegant demonstration of that maternal dietary fibre in pregnancy can prevent an allergic phenotype in the offspring, and these effects are mediated by altered gut microbiota and short-chain fatty acid (SCFA) production. Moreover, the same effects can be achieved by SCFA directly.CrossRefPubMedGoogle Scholar
  38. 38.••
    Yu DH, Gadkari M, Zhou Q, Yu S, Gao N, Guan Y, et al. Postnatal epigenetic regulation of intestinal stem cells requires DNA methylation and is guided by the microbiome. Genome Biol. 2015;16(1):21. Demonstrates that the gut microbiome shapes the epigenetic development of intestinal stem cells with potential lifelong implications for health.CrossRefGoogle Scholar
  39. 39.
    Heindel JJ, Balbus J, Birnbaum L, Brune-Drisse MN, Grandjean P, Gray K, et al. Developmental origins of health and disease: integrating environmental influences. Endocrinology. 2015;156(10):3416–21.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.••
    Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 2015;26:26050. Summarises the developmental patterns of the gut microbiota, the early life influences, and the long term implications.PubMedGoogle Scholar
  41. 41.
    Moles L, Gómez M, Heilig H, Bustos G, Fuentes S, de Vos W, et al. Bacterial diversity in meconium of preterm neonates and evolution of their fecal microbiota during the first month of life. PLoS One. 2013;8(6):e66986.PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6(237):237ra65.CrossRefPubMedGoogle Scholar
  43. 43.
    Zijlmans MA, Korpela K, Riksen-Walraven JM, de Vos WM, de Weerth C. Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology. 2015;53:233–45.CrossRefPubMedGoogle Scholar
  44. 44.••
    Hollister EB, Riehle K, Luna RA, Weidler EM, Rubio-Gonzales M, Mistretta TA, et al. Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome. 2015;3:36. Shows that the gut microbiome may undergo a more prolonged development than previously suspected with persistent compositional and functional differences in the healthy pre-adolescent gut compared with healthy adults.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Avershina E, Rudi K. Confusion about the species richness of human gut microbiota. Benefic Microbes. 2015;6(5):657–9.CrossRefGoogle Scholar
  46. 46.••
    Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33(9):496–503. Healthy human gut flora normally include only a minor proportion of Proteobacteria. This review explores how abnormal expansion of this phylum compromises the ability to maintain a balanced gut microbial community, as a potential diagnostic signature of dysbiosis and risk of disease.CrossRefPubMedGoogle Scholar
  47. 47.
    Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G, et al. The gut microbiota and host health: a new clinical frontier. Gut. 2015 Sep 2.Google Scholar
  48. 48.
    Albenberg LG, Wu GD. Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology. 2014;146(6):1564–72.PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.••
    Arrieta MC, Stiemsma LT, Dimitriu PA, Thorson L, Russell S, Yurist-Doutsch S, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med. 2015;7(307):307ra152. Identifies a potential ‘critical window’ in the first 100 days in which reduced abundance of protective genera (notably Lachnospira, Veillonella, Faecalibacterium and Rothia) increased risk of subsequent asthma in children, and associated with reduced levels of faecal acetate and dysregulation of enterohepatic metabolites which have recognised immunomodulatory properties.CrossRefPubMedGoogle Scholar
  50. 50.
    Segata N. Gut microbiome: westernization and the disappearance of intestinal diversity. Curr Biol. 2015;25(14):R611–3.CrossRefPubMedGoogle Scholar
  51. 51.
    Furney EE. Culture: a modern method. St. Louis: Nixon Jones Printing Co; 1890.Google Scholar
  52. 52.
    Petersen C, Round JL. Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol. 2014;16:1024.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Logan AC. Dysbiotic drift: mental health, environmental grey space, and microbiota. J Physiol Anthropol. 2015;34(1):23.PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Logan AC, Jacka FN. Nutritional psychiatry research: an emerging discipline and its intersection with global urbanization, environmental challenges and the evolutionary mismatch. J Physiol Anthropol. 2014;33:22.PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Azzini E, Polito A, Fumagalli A, Intorre F, Venneria E, Durazzo A, et al. Mediterranean diet effect: an Italian picture. Nutr J. 2011;10:125.PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Rice JL, Romero KM, Galvez Davila RM, Meza CT, Bilderback A, Williams DL. Association between adherence to the Mediterranean diet and asthma in Peruvian children. Lung. 2015;193(6):893–9. 78,79.PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Sánchez-Villegas A, Henríquez-Sánchez P, Ruiz-Canela M, Lahortiga F, Molero P, Toledo E, et al. A longitudinal analysis of diet quality scores and the risk of incident depression in the SUN Project. BMC Med. 2015;13:197.PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Estruch R, Ros E, Salas-Salvado J, Covas MI, Corella D, Arós F, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368:1279–90.CrossRefPubMedGoogle Scholar
  59. 59.••
    De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2015 Sep 28. Compares gut microbiota and metabolome in individuals habitually following omnivore, vegetarian or vegan diets, and detected significant associations between consumption of vegetable-based diets and increased levels of faecal SCFA, Prevotella and fibre-degrading Firmicutes. Demonstrates the effects of dietary patterns on beneficial microbiome-related metabolomic profiles.Google Scholar
  60. 60.••
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63. Demonstrates that the human gut microbiome can rapidly respond to dietary changes (e.g. plant-based versus animal-based diet) with compositional and metabolic changes within days.PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Xu Z, Knight R. Dietary effects on human gut microbiome diversity. Br J Nutr. 2015;113(Suppl):S1–5.PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.••
    Tap J, Furet JP, Bensaada M, Philippe C, Roth H, Rabot S, et al. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ Microbiol. 2015. A 6-week nutritional trial: healthy adults consumed diet supplemented with varying amounts of dietary fibre followed washout periods, showing that short-term dietary change did not have the same impact for all individuals, but generally increased microbiota richness and microbiota stability, and modulated the expression of numerous microbiota metabolic pathways. Google Scholar
  63. 63.
    Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500(7464):585–8.CrossRefPubMedGoogle Scholar
  64. 64.
    Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541–6.CrossRefPubMedGoogle Scholar
  65. 65.
    Herlitz GN, Arlow RL, Cheung NH, Coyle SM, Griffel B, Macor MA, et al. Physiologic variability at the verge of systemic inflammation: multiscale entropy of heart rate variability is affected by very low doses of endotoxin. Shock. 2015;43(2):133–9.PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Reichenberg A, Yirmiya R, Schuld A, Kraus T, Haack M, Morag A, et al. Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry. 2001;58(5):445–52.CrossRefPubMedGoogle Scholar
  67. 67.••
    Sandiego CM, Gallezot JD, Pittman B, Nabulsi N, Lim K, Lin SF, et al. Imaging robust microglial activation after lipopolysaccharide administration in humans with PET. Proc Natl Acad Sci U S A. 2015;112(40):12468–73. The first humans study using positron emission tomography (PET) to demonstrate that the increase in blood levels of inflammatory cytokines induced by a systemic LPS challenge acutely induces microglial activation in the brain.CrossRefPubMedGoogle Scholar
  68. 68.
    Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke JD, Serino M, et al. Intestinal permeability—a new target for disease prevention and therapy. BMC Gastroenterol. 2014;14:189.PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci. 2015;9:392.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Yirmiya R, Rimmerman N, Reshef R. Depression as a microglial disease. Trends Neurosci. 2015;38(10):637–58.CrossRefPubMedGoogle Scholar
  71. 71.••
    Erny D, Hrabě de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18(7):965–77. Demonstrates substantial contributions of the gut microbiota to microglia homeostasis, maturation and function in the brain, and how this can be temporally modulated by eradication of host microbiota or by dietary changes. Also shows that some of these effects are mediated via SCFA metabolites.CrossRefPubMedGoogle Scholar
  72. 72.
    Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2015 Jun 22.Google Scholar
  73. 73.
    Cani PD, Everard A. Talking microbes: when gut bacteria interact with diet and host organs. Mol Nutr Food Res. 2015.Google Scholar
  74. 74.
    Ghosh SS, Bie J, Wang J, Ghosh S. Oral supplementation with non-absorbable antibiotics or curcumin attenuates western diet-induced atherosclerosis and glucose intolerance in LDLR−/− mice—role of intestinal permeability and macrophage activation. PLoS One. 2014;9(9):e108577.PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Kaliannan K, Wang B, Li XY, Kim KJ, Kang JX. A host-microbiome interaction mediates the opposing effects of omega-6 and omega-6 fatty acids on metabolic endotoxemia. Sci Rep. 2015;5:11276.PubMedCentralCrossRefPubMedGoogle Scholar
  76. 76.
    Kelly CJ, Colgan SP, Frank DN. Of microbes and meals: the health consequences of dietary endotoxemia. Nutr Clin Pract. 2012;27(2):215–25.PubMedCentralCrossRefPubMedGoogle Scholar
  77. 77.
    Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, et al. Biodiversity loss and its impact on humanity. Nature. 2012;486(7401):59–67.CrossRefPubMedGoogle Scholar
  78. 78.
    Watts N, Adger WN, Agnolucci P, Blackstock J, Byass P, Cai W, et al. Health and climate change: policy responses to protect public health. Lancet. 2015 Jun 24.Google Scholar
  79. 79.
    Lovell R, Wheeler BW, Higgins SL, Irvine KN, Depledge MH. A systematic review of the health and well-being benefits of biodiverse environments. J Toxicol Environ Health B Crit Rev. 2014;17(1):1–20.CrossRefPubMedGoogle Scholar
  80. 80.
    Haahtela T, Holgate S, Pawankar R, Akdis CA, Benjaponpitak S, Caraballo L, et al. The biodiversity hypothesis and allergic disease: world allergy organization position statement. World Allergy Organ J. 2013;6(1):3.PubMedCentralCrossRefPubMedGoogle Scholar
  81. 81.
    von Hertzen L, Beutler B, Bienenstock J, Blaser M, Cani PD, Eriksson J, et al. Helsinki alert of biodiversity and health. Ann Med. 2015;47(3):218–25.CrossRefGoogle Scholar
  82. 82.
    Valkonen M, Wouters IM, Täubel M, Rintala H, Lenters V, Vasara R, et al. Bacterial exposures and associations with atopy and asthma in children. PLoS One. 2015;10(6):e0131594.PubMedCentralCrossRefPubMedGoogle Scholar
  83. 83.
    McDade TW. Early environments and the ecology of inflammation. Proc Natl Acad Sci U S A. 2012;109 Suppl 2:17281–8.PubMedCentralCrossRefPubMedGoogle Scholar
  84. 84.
    Hospodsky D, Pickering AJ, Julian TR, Miller D, Gorthala S, Boehm AB, et al. Hand bacterial communities vary across two different human populations. Microbiology. 2014;160(Pt 6):1144–52.CrossRefPubMedGoogle Scholar
  85. 85.
    Ruokolainen L, von Hertzen L, Fyhrquist N, Laatikainen T, Lehtomäki J, Auvinen P, et al. Green areas around homes reduce atopic sensitization in children. Allergy. 2015;70(2):195–202.PubMedCentralCrossRefPubMedGoogle Scholar
  86. 86.
    Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T, et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc Natl Acad Sci U S A. 2012;109(21):8334–9.PubMedCentralCrossRefPubMedGoogle Scholar
  87. 87.
    Nakatsuji T, Chiang HI, Jiang SB, Nagarajan H, Zengler K, Gallo RL. The microbiome extends to subepidermal compartments of normal skin. Nat Commun. 2013;4:1431.PubMedCentralCrossRefPubMedGoogle Scholar
  88. 88.
    Wislicenus GA. Oneness of life, fundamentals III. Contact Point. 1933;10(5):137–40.Google Scholar
  89. 89.
    Ueda P, Tong L, Viedma C, Chandy SJ, Marrone G, et al. Food marketing towards children: brand logo recognition, food-related behavior and BMI among 3-13-year-olds in a south Indian town. PLoS One. 2012;7(10):e47000.PubMedCentralCrossRefPubMedGoogle Scholar
  90. 90.
    Sarris J, Logan AC, Akbaraly TN, Amminger GP, Balanzá-Martínez V, Freeman MP. Lancet Psychiatry. 2015;2(3):271–4.CrossRefPubMedGoogle Scholar
  91. 91.
    Dominguez-Bello MG, Blaser MJ. Asthma: undoing millions of years of coevolution in early life? Sci Transl Med. 2015;7(307):307fs39.CrossRefPubMedGoogle Scholar
  92. 92.
    Galley JD, Bailey M, Kamp Dush C, Schoppe-Sullivan S, Christian LM. Maternal obesity is associated with alterations in the gut microbiome in toddlers. PLoS One. 2014;9(11):e113026.PubMedCentralCrossRefPubMedGoogle Scholar
  93. 93.
    Goyal MS, Venkatesh S, Milbrandt J, Gordon JI, Raichle ME. Feeding the brain and nurturing the mind: linking nutrition and the gut microbiota to brain development. Proc Natl Acad Sci U S A. 2015;112(46):14105–12.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Alan C. Logan
    • 1
    • 4
  • Felice N. Jacka
    • 1
    • 2
    • 4
  • Susan L. Prescott
    • 1
    • 3
    Email author
  1. 1.International Inflammation Network (in-FLAME) of the World Universities NetworkPerthAustralia
  2. 2.School of MedicineDeakin UniversityMelbourneAustralia
  3. 3.School of Paediatrics and Child Health, Perth Children’s HospitalUniversity of Western AustraliaPerthAustralia
  4. 4.International Society for Nutritional Psychiatry ResearchMelbourneAustralia

Personalised recommendations