Advertisement

Autoimmunity and Immune Dysregulation in Primary Immune Deficiency Disorders

  • Heather K. LehmanEmail author
Basic and Applied Science (M Frieri and PJ Bryce, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Basic and Applied Science

Abstract

Primary immune deficiencies are often associated with autoimmune disease due to the dysregulation of the immune system as a whole. In many immune deficiencies, lymphocytes may be present but dysfunctional, allowing for the development of excessive autoreactivity and resultant autoimmune disease. Autoimmune polyendocrinopathy candidiasis and ectodermal dystrophy, autoimmune lymphoproliferative syndrome, immunodyregulation polyendocrinopathy enteropathy X-linked, IL-10/IL-10 receptor deficiencies, and PLCG2-associated antibody deficiency and immune dysregulation are disorders in which autoimmunity is a hallmark of the clinical disease presentation. In contrast, adaptive and innate immune deficiencies, which are typically defined by their infectious susceptibilities, can be associated with variable rates of autoimmune manifestations, predominantly autoimmune cytopenias. This review describes the immune dysregulation and autoimmune manifestations that may be encountered in various immune deficiencies.

Keywords

Autoimmunity Primary immune deficiency diseases Immune dysregulation 

Notes

Compliance with Ethics Guidelines

Conflict of Interest

Dr Lehman declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.••
    Al-Herz W et al. Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front Immunol. 2014;5:162. The most current and complete listing of primary immune deficiencies.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Boyle JM, Buckley RH. Population prevalence of diagnosed primary immunodeficiency diseases in the United States. J Clin Immunol. 2007;27:497–502.CrossRefPubMedGoogle Scholar
  3. 3.
    Zlotogora J, Shapiro MS. Polyglandular autoimmune syndrome type I among Iranian Jews. J Med Genet. 1992;29:824–6.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Rosatelli MC et al. A common mutation in Sardinian autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy patients. Hum Genet. 1998;103:428–34.CrossRefPubMedGoogle Scholar
  5. 5.
    Ahonen P, Myllarniemi S, Sipila I, Perheentupa J. Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients. N Engl J Med. 1990;322:1829–36.CrossRefPubMedGoogle Scholar
  6. 6.
    Puel A et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med. 2010;207:291–7.CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Kisand K et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J Exp Med. 2010;207:299–308.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Perheentupa J. Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Clin Endocrinol Metab. 2006;91:2843–50.CrossRefPubMedGoogle Scholar
  9. 9.
    Husebye ES, Perheentupa J, Rautemaa R, Kampe O. Clinical manifestations and management of patients with autoimmune polyendocrine syndrome type I. J Intern Med. 2009;265:514–29.CrossRefPubMedGoogle Scholar
  10. 10.
    Kisand K et al. Mucocutaneous candidiasis and autoimmunity against cytokines in APECED and thymoma patients: clinical and pathogenetic implications. Eur J Immunol. 2011;41:1517–27.CrossRefPubMedGoogle Scholar
  11. 11.
    Sneller MC et al. Clinical, immunologic, and genetic features of an autoimmune lymphoproliferative syndrome associated with abnormal lymphocyte apoptosis. Blood. 1997;89:1341–8.PubMedGoogle Scholar
  12. 12.
    Holzelova E et al. Autoimmune lymphoproliferative syndrome with somatic Fas mutations. N Engl J Med. 2004;351:1409–18.CrossRefPubMedGoogle Scholar
  13. 13.
    Magerus-Chatinet A et al. Onset of autoimmune lymphoproliferative syndrome (ALPS) in humans as a consequence of genetic defect accumulation. J Clin Invest. 2011;121:106–12.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Chun HJ et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature. 2002;419:395–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Teachey DT. New advances in the diagnosis and treatment of autoimmune lymphoproliferative syndrome. Curr Opin Pediatr. 2012;24:1–8.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Sneller MC, Dale JK, Straus SE. Autoimmune lymphoproliferative syndrome. Curr Opin Rheumatol. 2003;15:417–21.CrossRefPubMedGoogle Scholar
  17. 17.
    Oliveira JB et al. Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH International Workshop. Blood. 2010;116:e35–40.CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Neven B et al. A survey of 90 patients with autoimmune lymphoproliferative syndrome related to TNFRSF6 mutation. Blood. 2011;118:4798–807.CrossRefPubMedGoogle Scholar
  19. 19.
    Teachey DT et al. Unmasking Evans syndrome: T-cell phenotype and apoptotic response reveal autoimmune lymphoproliferative syndrome (ALPS). Blood. 2005;105:2443–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Seif AE, Manno CS, Sheen C, Grupp SA, Teachey DT. Identifying autoimmune lymphoproliferative syndrome in children with Evans syndrome: a multi-institutional study. Blood. 2010;115:2142–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Straus SE, Sneller M, Lenardo MJ, Puck JM, Strober W. An inherited disorder of lymphocyte apoptosis: the autoimmune lymphoproliferative syndrome. Ann Intern Med. 1999;130:591–601.CrossRefPubMedGoogle Scholar
  22. 22.
    Bennett CL, Ochs HD. IPEX is a unique X-linked syndrome characterized by immune dysfunction, polyendocrinopathy, enteropathy, and a variety of autoimmune phenomena. Curr Opin Pediatr. 2001;13:533–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Gambineri E et al. Clinical and molecular profile of a new series of patients with immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome: inconsistent correlation between forkhead box protein 3 expression and disease severity. J Allergy Clin Immunol. 2008;122:1105–12.CrossRefPubMedGoogle Scholar
  24. 24.
    Wildin RS, Smyk-Pearson S, Filipovich AH. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J Med Genet. 2002;39:537–45.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Peake JE, McCrossin RB, Byrne G, Shepherd R. X-linked immune dysregulation, neonatal insulin dependent diabetes, and intractable diarrhoea. Arch Dis Child Fetal Neonatal Ed. 1996;74:F195–9.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Roifman CM. Human IL-2 receptor alpha chain deficiency. Pediatr Res. 2000;48:6–11.CrossRefPubMedGoogle Scholar
  27. 27.
    Sharfe N, Dadi HK, Shahar M, Roifman CM. Human immune disorder arising from mutation of the alpha chain of the interleukin-2 receptor. Proc Natl Acad Sci U S A. 1997;94:3168–71.CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Goudy K et al. Human IL2RA null mutation mediates immunodeficiency with lymphoproliferation and autoimmunity. Clin Immunol. 2013;146:248–61.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Bernasconi A et al. Characterization of immunodeficiency in a patient with growth hormone insensitivity secondary to a novel STAT5b gene mutation. Pediatrics. 2006;118:e1584–92.CrossRefPubMedGoogle Scholar
  30. 30.
    Cohen AC et al. Cutting edge: decreased accumulation and regulatory function of CD4+ CD25(high) T cells in human STAT5b deficiency. J Immunol. 2006;177:2770–4.CrossRefPubMedGoogle Scholar
  31. 31.
    Boisson-Dupuis S et al. Inborn errors of human STAT1: allelic heterogeneity governs the diversity of immunological and infectious phenotypes. Curr Opin Immunol. 2012;24:364–78.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Liu L et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med. 2011;208:1635–48.CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.•
    Uzel G et al. Dominant gain-of-function STAT1 mutations in FOXP3 wild-type immune dysregulation-polyendocrinopathy-enteropathy-X-linked-like syndrome. J Allergy Clin Immunol. 2013;131:1611–23. Describes an alternative phenotype for STAT1 GOF mutations, namely IPEX-like autoimmunity.CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Glocker EO et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med. 2009;361:2033–45.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Glocker EO et al. Infant colitis—it’s in the genes. Lancet. 2010;376:1272.CrossRefPubMedGoogle Scholar
  36. 36.
    Kotlarz D et al. Loss of interleukin-10 signaling and infantile inflammatory bowel disease: implications for diagnosis and therapy. Gastroenterology. 2012;143:347–55.CrossRefPubMedGoogle Scholar
  37. 37.•
    Engelhardt KR et al. Clinical outcome in IL-10- and IL-10 receptor-deficient patients with or without hematopoietic stem cell transplantation. J Allergy Clin Immunol. 2013;131:825–30. Demonstrates failure of conventional antiinflammatory therapy vs disease resolution with HSCT in inflammatory bowel disease due to IL-10 signaling defects.CrossRefPubMedGoogle Scholar
  38. 38.•
    Ombrello MJ et al. Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deletions. N Engl J Med. 2012;366:330–8. Describes the new PLAID syndrome, also named FCAS3.CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.•
    Resnick ES, Moshier EL, Godbold JH, Cunningham-Rundles C. Morbidity and mortality in common variable immune deficiency over 4 decades. Blood. 2012;119:1650–7. Identified lymphoma, hepatitis, inflammatory lung complications, and gastrointestinal disease as risk factors for increased mortality in CVID.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Chapel H et al. Common variable immunodeficiency disorders: division into distinct clinical phenotypes. Blood. 2008;112:277–86.CrossRefPubMedGoogle Scholar
  41. 41.
    Cunningham-Rundles C, Bodian C. Common variable immunodeficiency: clinical and immunological features of 248 patients. Clin Immunol. 1999;92:34–48.CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang L et al. Transmembrane activator and calcium-modulating cyclophilin ligand interactor mutations in common variable immunodeficiency: clinical and immunologic outcomes in heterozygotes. J Allergy Clin Immunol. 2007;120:1178–85.CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Quartier P et al. Clinical, immunologic and genetic analysis of 29 patients with autosomal recessive hyper-IgM syndrome due to activation-induced cytidine deaminase deficiency. Clin Immunol. 2004;110:22–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Duarte-Rey C, Bogdanos DP, Leung PS, Anaya JM, Gershwin ME. IgM predominance in autoimmune disease: genetics and gender. Autoimmun Rev. 2012;11:A404–12.CrossRefPubMedGoogle Scholar
  45. 45.
    Jesus AA, Duarte AJ, Oliveira JB. Autoimmunity in hyper-IgM syndrome. J Clin Immunol. 2008;28 Suppl 1:S62–6.CrossRefPubMedGoogle Scholar
  46. 46.
    Lacroix-Desmazes S et al. Defective self-reactive antibody repertoire of serum IgM in patients with hyper-IgM syndrome. J Immunol. 1999;162:5601–8.PubMedGoogle Scholar
  47. 47.
    Lee AH, Levinson AI, Schumacher Jr HR. Hypogammaglobulinemia and rheumatic disease. Semin Arthritis Rheum. 1993;22:252–64.CrossRefPubMedGoogle Scholar
  48. 48.
    Edwards E, Razvi S, Cunningham-Rundles C. IgA deficiency: clinical correlates and responses to pneumococcal vaccine. Clin Immunol. 2004;111:93–7.CrossRefPubMedGoogle Scholar
  49. 49.
    Singh K, Chang C, Gershwin ME. IgA deficiency and autoimmunity. Autoimmun Rev. 2014;13:163–77.CrossRefPubMedGoogle Scholar
  50. 50.
    Cavadini P et al. AIRE deficiency in thymus of 2 patients with Omenn syndrome. J Clin Invest. 2005;115:728–32.CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Cassani B et al. Defect of regulatory T cells in patients with Omenn syndrome. J Allergy Clin Immunol. 2010;125:209–16.CrossRefPubMedGoogle Scholar
  52. 52.
    Dupuis-Girod S et al. Autoimmunity in Wiskott-Aldrich syndrome: risk factors, clinical features, and outcome in a single-center cohort of 55 patients. Pediatrics. 2003;111:e622–7.CrossRefPubMedGoogle Scholar
  53. 53.
    Sullivan KE, Mullen CA, Blaese RM, Winkelstein JA. A multiinstitutional survey of the Wiskott-Aldrich syndrome. J Pediatr. 1994;125:876–85.CrossRefPubMedGoogle Scholar
  54. 54.
    Adriani M et al. Impaired in vitro regulatory T cell function associated with Wiskott-Aldrich syndrome. Clin Immunol. 2007;124:41–8.CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Marangoni F et al. WASP regulates suppressor activity of human and murine CD4(+)CD25(+)FOXP3(+) natural regulatory T cells. J Exp Med. 2007;204:369–80.CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Nikolov NP et al. Systemic autoimmunity and defective Fas ligand secretion in the absence of the Wiskott-Aldrich syndrome protein. Blood. 2010;116:740–7.CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Becker-Herman S et al. WASp-deficient B cells play a critical, cell-intrinsic role in triggering autoimmunity. J Exp Med. 2011;208:2033–42.CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Recher M et al. B cell-intrinsic deficiency of the Wiskott-Aldrich syndrome protein (WASp) causes severe abnormalities of the peripheral B-cell compartment in mice. Blood. 2012;119:2819–28.CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    Catucci M, Castiello MC, Pala F, Bosticardo M, Villa A. Autoimmunity in Wiskott-Aldrich syndrome: an unsolved enigma. Front Immunol. 2012;3:209.CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Walport MJ, Davies KA, Botto M. C1q and systemic lupus erythematosus. Immunobiology. 1998;199:265–85.CrossRefPubMedGoogle Scholar
  61. 61.
    Pickering MC, Walport MJ. Links between complement abnormalities and systemic lupus erythematosus. Rheumatology (Oxford). 2000;39:133–41.CrossRefGoogle Scholar
  62. 62.
    Barilla-LaBarca ML, Atkinson JP. Rheumatic syndromes associated with complement deficiency. Curr Opin Rheumatol. 2003;15:55–60.CrossRefPubMedGoogle Scholar
  63. 63.
    Jonsson G et al. Rheumatological manifestations, organ damage and autoimmunity in hereditary C2 deficiency. Rheumatology (Oxford). 2007;46:1133–9.CrossRefGoogle Scholar
  64. 64.
    Ogden CA et al. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med. 2001;194:781–95.CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    Davies KA et al. Splenic uptake of immune complexes in man is complement-dependent. J Immunol. 1993;151:3866–73.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Division of Allergy, Immunology and Pediatric Rheumatology, Department of Pediatrics, Women’s and Children’s Hospital of BuffaloSUNY at Buffalo, School of Medicine and Biomedical SciencesBuffaloUSA

Personalised recommendations