Skip to main content

Advertisement

Log in

Recombinant Allergens for Diagnosis of Cockroach Allergy

  • ALLERGENS (RK BUSH AND JA WOODFOLK, SECTION EDITORS)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Molecular cloning of cockroach allergens and their expression as recombinant proteins have allowed a better understanding of the mechanisms of cockroach allergic disease. Recombinant cockroach allergens have been used for skin testing or in vitro methods to measure IgE antibody levels in serum. Early studies evaluating selected U.S. patients revealed that a cocktail of four cockroach allergens, Bla g 1, Bla g 2, Bla g 4, and Bla g 5, would identify 95 % of cockroach allergic patients. More recent studies pointed to an important role of sensitization to tropomyosin among certain populations, and suggested that a cocktail of five allergens Bla g 1 and/or Per a 1, Bla g 2, Bla g 4, Bla g 5, and Bla g 7, and/or Per a 7, would be expected to diagnose 50– 64 % of cockroach-allergic patients worldwide. Variation in IgE reactivity profiles could be in part due to IgE responses to cross-reactive homologous allergens from different origins. The availability of purified natural or recombinant cockroach allergens provides the capacity to improve diagnosis of cockroach allergy and to develop novel forms of immunotherapy for cockroach-allergic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bernton H, Brown H. Insect allergy—Preliminary studies of the cockroach. J Allergy. 1964;35:506–13.

    PubMed  CAS  Google Scholar 

  2. Kang B, Vellody D, Homburger H, Younginger JW. Cockroach as a cause of allergic asthma. Its specificity and immunologic profile. J Allergy Clin Immunol. 1979;63:80–6.

    PubMed  CAS  Google Scholar 

  3. Barbosa MC, Santos AB, Ferriani VP, Pomés A, Chapman MD, Arruda LK. Efficacy of recombinant allergens for diagnosis of cockroach allergy in patients with asthma and/or rhinitis. Int Arch Allergy Immunol. 2013;161:213–9. This is the first study using recombinant cockroach allergens for skin testing in patients with asthma and/or rhinitis living in Brazil. The results revealed that skin testing with recombinant allergens was safe and that cockroach tropomyosin (Per a 7 allergen) was the major sensitizing allergen. By contrast, studies carried out in the United States revealed low levels of sensitization to Per a 7, and more frequent reactions to Bla g 2 and Bla g 5 among cockroach-allergic patients.

    PubMed  CAS  Google Scholar 

  4. Michel S, Yawalkar N, Schnyder B, Fischer B, Helbling A. Eczematous skin reaction to atopy patch testing with cockroach in patients with atopic dermatitis. J Investig Allergol Clin Immunol. 2009;19:173–9.

    PubMed  CAS  Google Scholar 

  5. Arruda LK, Pomés A. Every Cockroach Is Beautiful to Its Mother. Int Arch Allergy Immunol. 2013;161:289–92.

    PubMed  Google Scholar 

  6. Cornwell PB. The Cockroach, vol. 1. London: Hutchinson; 1968.

    Google Scholar 

  7. Sookrung N, Chaicumpa W. A revisit to cockroach allergens. Asian Pac J Allergy Immunol. 2010;28:95–106.

    PubMed  CAS  Google Scholar 

  8. Arruda LK, Vailes LD, Ferriani VP, Santos AB, Pomés A, Chapman MD. Cockroach allergens and asthma. J Allergy Clin Immunol. 2001;107:419–28.

    PubMed  CAS  Google Scholar 

  9. Rosenstreich DL, Eggleston P, Kattan M, Baker D, Slavin RG, Gergen P, et al. The role of cockroach allergy and exposure to cockroach allergen in causing morbidity among inner-city children with asthma. N Engl J Med. 1997;336:1356–63.

    PubMed  CAS  Google Scholar 

  10. Eggleston PA, Rosenstreich D, Lynn H, Gergen P, Baker D, Kattan M, et al. Relationship of indoor allergen exposure to skin test sensitivity in inner-city children with asthma. J Allergy Clin Immunol. 1998;102:563–70.

    PubMed  CAS  Google Scholar 

  11. Matsui EC, Wood RA, Rand C, Kanchanaraksa S, Swartz L, Curtin-Brosnan J, et al. Cockroach allergen exposure and sensitization in suburban middle-class children with asthma. J Allergy Clin Immunol. 2003;112:87–92.

    PubMed  CAS  Google Scholar 

  12. Sheehan WJ, Rangsithienchai PA, Wood RA, Rivard D, Chinratanapisit S, Perzanowski MS, et al. Pest and allergen exposure and abatement in inner-city asthma: a work group report of the American Academy of Allergy, Asthma & Immunology Indoor Allergy/Air Pollution Committee. J Allergy Clin Immunol. 2010;125:575–8.

    PubMed Central  PubMed  Google Scholar 

  13. Perzanowsky MS, Platts-Mills TAE. Further confirmation of the relevance of cockroach and dust mite sensitization to inner-city asthma morbidity. Clin Exp Allergy. 2009;39:1291–3.

    Google Scholar 

  14. Salo PM, Arbes Jr SJ, Crockett PW, Thorne PS, Cohn RD, Zeldin DC. Exposure to multiple indoor allergens in US homes and its relationship to asthma. J Allergy Clin Immunol. 2008;121:678–84.

    PubMed Central  PubMed  CAS  Google Scholar 

  15. Sarinho E, Schor D, Veloso MA, Rizzo JA. There are more asthmatics in homes with high cockroach infestation. Braz J Med Biol Res. 2004;37:503–10.

    PubMed  CAS  Google Scholar 

  16. Finn PW, Boudreau JO, He H, Wang Y, Chapman MD, Vincent C, et al. Children at risk for asthma: home allergen levels, lymphocyte proliferation, and wheeze. J Allergy Clin Immunol. 2000;105:933–42.

    PubMed  CAS  Google Scholar 

  17. Silva JM, Camara AA, Tobias KR, Macedo IS, Cardoso MR, Arruda E, et al. A prospective study of wheezing in young children: the independent effects of cockroach exposure, breast-feeding and allergic sensitization. Pediatr Allergy Immunol. 2005;16:393–401.

    PubMed  Google Scholar 

  18. Ramsey CD, Celedon JC, Sredl DL, Weiss ST, Cloutier MM. Predictors of disease severity in children with asthma in Hartford, Connecticut. Pediatr Pulmonol. 2005;39:268–75.

    PubMed  Google Scholar 

  19. Sporik R, Squillace SP, Ingram JM, Rakes G, Honsinger RW, Platts-Mills TA. Mite, cat, and cockroach exposure, allergen sensitisation, and asthma in children: a case-control study of three schools. Thorax. 1999;54:675–80.

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Wang J, Visness CM, Calatroni A, Gergen PJ, Mitchell HE, Sampson HA. Effect of environmental allergen sensitization on asthma morbidity in inner-city asthmatic children. Clin Exp Allergy. 2009;39:1381–9.

    PubMed  CAS  Google Scholar 

  21. Perzanowski MS, Chew GL, Divjan A, Jung KH, Ridder R, Tang D, et al. Early-life cockroach allergen and polycyclic aromatic hydrocarbon exposures predict cockroach sensitization among inner-city children. J Allergy Clin Immunol. 2013;131:886–93. This is a very interesting study which showed that prenatal exposure to cockroach allergen among Dominican and African-American pregnant women in New York was associated with a greater risk of allergic sensitization at the ages of 5–7 years. This risk was increased only among children who were also exposed to nonvolatile polycyclic aromatic hydrocarbons (PAHs), with children null for the Glutathione-S-transferase μ 1 (GSTM1) mutation being particularly vulnerable. The study highlights the fact that combustion byproducts can act as adjuvants in the development of cockroach sensitization in urban environments.

    PubMed Central  PubMed  CAS  Google Scholar 

  22. Wang J, Calatroni A, Visness CM, Sampson HA. Correlation of specific IgE to shrimp with cockroach and dust mite exposure and sensitization in an inner-city population. J Allergy Clin Immunol. 2011;128:834–7. In this study, the authors report an interesting observation, that increasing exposure to cockroach allergen in the home is associated not only with increasing in IgE to cockroach but also with increasing in IgE to shrimp. This could be due to cross-reactive IgE responses to shared allergens, including tropomyosin.

    PubMed Central  PubMed  CAS  Google Scholar 

  23. Busse WW, Morgan WJ, Gergen PJ, Mitchell HE, Gern JE, Liu AH, et al. Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. N Engl J Med. 2011;364:1005–15.

    PubMed Central  PubMed  CAS  Google Scholar 

  24. Pomés A, Wünschmann S, Hindley J, Vailes LD, Chapman MD. Cockroach allergens: function, structure and allergenicity. Protein Pept Lett. 2007;14:960–9.

    PubMed  Google Scholar 

  25. Arruda LK, Vailes LD, Mann BJ, Shannon J, Fox JW, Vedvick TS, et al. Molecular cloning of a major cockroach (Blattella germanica) allergen, Bla g 2. Sequence homology to the aspartic proteases. J Biol Chem. 1995;270:19563–8.

    PubMed  CAS  Google Scholar 

  26. Gustchina A, Li M, Wünschmann S, Chapman MD, Pomés A, Wlodawer A. Crystal structure of cockroach allergen Bla g 2, an unusual zinc binding aspartic protease with a novel mode of self-inhibition. J Mol Biol. 2005;348:433–44.

    PubMed  CAS  Google Scholar 

  27. Tan YW, Chan SL, Ong TC, Yit le Y, Tiong YS, Chew FT, et al. Structures of two major allergens, Bla g 4 and Per a 4, from cockroaches and their IgE binding epitopes. J Biol Chem. 2009;284:3148–57.

    PubMed  CAS  Google Scholar 

  28. Khantisitthiporn O, Sookrung N, Tungtrongchitr A, Tongtawe P, Bunnag C, Srimanote P, et al. Native troponin-T of the American cockroach (CR), Periplaneta americana, binds to IgE in sera of CR allergic Thais. Asian Pac J Allergy Immunol. 2007;25:189–97.

    PubMed  CAS  Google Scholar 

  29. Chuang JG, Su SN, Chiang BL, Lee HJ, Chow LP. Proteome mining for novel IgE-binding proteins from the German cockroach (Blattella germanica) and allergen profiling of patients. Proteomics. 2010;10:3854–67.

    PubMed  CAS  Google Scholar 

  30. Jeong KY, Kim CR, Park J, Han IS, Park JW, Yong TS. Identification of novel allergenic components from German cockroach fecal extract by a proteomic approach. Int Arch Allergy Immunol. 2013;161:315–24. In this study from Korea, Jeong et al. have have found that some of 12 IgE-binding proteins identified by proteomics strategy were digestive enzymes, including α-amylase, midgut carboxypeptidase A, chymotrypsin, astacin-like metalloprotease, and trypsin. α-Amylase was found to be an important allergen with a 41 % prevalence of IgE reactivity. Amylase activity was previously reported from various cockroach gut compartments and salivary glands.The results raise the interesting possibility that α-amylase could be another invertebrate cross-reactive allergen in the cockroach, in addition to tropomyosin, glutathione S-transferase, arginine kinase. and myosin light chain, which share homologs in mites, shrimp. and parasites.

    PubMed  CAS  Google Scholar 

  31. Helm R, Cockrell G, Stanley JS, Brenner RJ, Burks W, Bannon GA. Isolation and characterization of a clone encoding a major allergen (Bla g Bd90K) involved in IgE-mediated cockroach hypersensitivity. J Allergy Clin Immunol. 1996;98:172–80.

    PubMed  CAS  Google Scholar 

  32. Pomés A, Melén E, Vailes LD, Retief JD, Arruda LK, Chapman MD. Novel allergen structures with tandem amino acid repeats derived from German and American cockroach. J Biol Chem. 1998;273:30801–7.

    PubMed  Google Scholar 

  33. Wu CH, Wang NM, Lee MF, Kao CY, Luo SF. Cloning of the American cockroach Cr-PII allergens: evidence for the existence of cross-reactive allergens between species. J Allergy Clin Immunol. 1998;101:832–40.

    PubMed  CAS  Google Scholar 

  34. Melén E, Pomés A, Vailes LD, Arruda LK, Chapman MD. Molecular cloning of Per a 1 and definition of the cross-reactive Group 1 cockroach allergens. J Allergy Clin Immunol. 1999;103:859–64.

    PubMed  Google Scholar 

  35. Yang CY, Wu JD, Wu CH. Sequence analysis of the first complete cDNA clone encoding an American cockroach Per a 1 allergen. Biochim Biophys Acta. 2000;1517:153–8.

    PubMed  CAS  Google Scholar 

  36. Mueller GA, Pedersen LC, Lih FB, Glesner J, Moon AF, Chapman MD, et al. The novel structure of the cockroach allergen Bla g 1 has implications for allergenicity and exposure assessment. J Allergy Clin Immunol. 2013. doi:10.1016/j.jaci.2013.06.014. This very recent study revealed that the Bla g 1 allergen has a novel fold with a capacity to bind various lipids, which suggests a digestive function associated with nonspecific transport of lipid molecules in cockroaches. Characterizing the basic structural unit of Bla g 1 allowed for absolute standardization of measurements of environmental allergen exposure.

    Google Scholar 

  37. Gore JC, Schal C. Gene expression and tissue distribution of the major human allergen Bla g 1 in the German cockroach, Blattella germanica L. (Dictyoptera: Blattellidae). J Med Entomol. 2004;41:953–60.

    PubMed  CAS  Google Scholar 

  38. Gore JC, Schal C. Expression, production and excretion of Bla g 1, a major human allergen, in relation to food intake in the German cockroach, Blattella germanica. Med Vet Entomol. 2005;19:127–34.

    PubMed  Google Scholar 

  39. Ferreira AH, Cristofoletti PT, Lorenzini DM, Guerra LO, Paiva PB, Briones MR, et al. Identification of midgut microvillar proteins from Tenebrio molitor and Spodoptera frugiperda by cDNA library screenings with antibodies. J Insect Physiol. 2007;53:1112–24.

    PubMed  CAS  Google Scholar 

  40. Morlais I, Mori A, Schneider JR, Severson DW. A targeted approach to the identification of candidate genes determining susceptibility to Plasmodium gallinaceum in Aedes aegypti. Mol Genet Genomics. 2003;269:753–64.

    PubMed  CAS  Google Scholar 

  41. Shao L, Devenport M, Fujioka H, Ghosh A, Jacobs-Lorena M. Identification and characterization of a novel peritrophic matrix protein, Ae-Aper50, and the microvillar membrane protein, AEG12, from the mosquito, Aedes aegypti. Insect Biochem Mol Biol. 2005;35:947–59.

    PubMed  CAS  Google Scholar 

  42. A. Pomés A, L.K.Arruda. Investigating cockroach allergens: Aiming to improve diagnosis and treatment of cockroach allergic patients. Methods. 2013 Aug 2. doi:pii: S1046-2023(13)00285-5. 10.1016/j.ymeth.2013.07.036. [Epub ahead of print]

  43. Wünschmann S, Gustchina A, Chapman MD, Pomés A. Cockroach allergen Bla g 2: an unusual aspartic proteinase. J Allergy Clin Immunol. 2005;116:140–5.

    PubMed  Google Scholar 

  44. Li M, Gustchina A, Alexandratos J, Wlodawer A, Wünschmann S, Kepley CL, et al. Crystal structure of a dimerized cockroach allergen Bla g 2 complexed with a monoclonal antibody. J Biol Chem. 2008;283:22806–14.

    PubMed Central  PubMed  CAS  Google Scholar 

  45. Li M, Gustchina A, Glesner J, Wünschmann S, Vailes LD, Chapman MD, et al. Carbohydrates contribute to the interactions between cockroach allergen Bla g 2 and a monoclonal antibody. J Immunol. 2011;186:333–40.

    PubMed Central  PubMed  CAS  Google Scholar 

  46. Glesner J, Wünschmann S, Li M, Gustchina A, Wlodawer A, Himly M, et al. Mechanisms of allergen-antibody interaction of cockroach allergen Bla g 2 with monoclonal antibodies that inhibit IgE antibody binding. PLoS One. 2011;6:e22223.

    PubMed Central  PubMed  CAS  Google Scholar 

  47. Wu CH, Lan JL. Cockroach hypersensitivity: isolation and partial characterization of major allergens. J Allergy Clin Immunol. 1988;82:727–35.

    PubMed  CAS  Google Scholar 

  48. Wu CH, Lee MF, Liao SC, Luo SF. Sequencing analysis of cDNA clones encoding the American cockroach Cr-PI allergens. Homology with insect hemolymph proteins. J Biol Chem. 1996;271:17937–43.

    PubMed  CAS  Google Scholar 

  49. Mindykowski B, Jaenicke E, Tenzer S, Cirak S, Schweikardt T, Schild H, et al. Cockroach allergens Per a 3 are oligomers. Dev Comp Immunol. 2010;34:722–33.

    PubMed  CAS  Google Scholar 

  50. Wu CH, Lee MF, Wang NM, Luo SF. Sequencing and immunochemical characterization of the American cockroach Per a 3 (Cr-PI) isoallergenic variants. Mol Immunol. 1997;34:1–8.

    PubMed  CAS  Google Scholar 

  51. Smith W, Butler AJ, Hazell LA, Chapman MD, Pomés A, Nickels DG, et al. Fel d 4, a cat lipocalin allergen. Clin Exp Allergy. 2004;34:1732–8.

    PubMed  CAS  Google Scholar 

  52. Konieczny A, Morgenstern JP, Bizinkauskas CB, Lilley CH, Brauer AW, Bond JF, et al. The major dog allergens, Can f 1 and Can f 2, are salivary lipocalin proteins: cloning and immunological characterization of the recombinant forms. Immunology. 1997;92:577–86.

    PubMed Central  PubMed  CAS  Google Scholar 

  53. Böcskei Z, Groom CR, Flower DR, Wright CE, Phillips SE, Cavaggioni A, et al. Pheromone binding to two rodent urinary proteins revealed by X-ray crystallography. Nature. 1992;360:186–8.

    PubMed  Google Scholar 

  54. Virtanen T, Kinnunen T. Mammalian allergens. Clin Allergy Immunol. 2008;21:201–18.

    PubMed  CAS  Google Scholar 

  55. Virtanen T, Kinnunen T, Rytkönen-Nissinen M. Mammalian lipocalin allergens-insights into their enigmatic allergenicity. Clin Exp Allergy. 2012;42:494–504.

    PubMed  CAS  Google Scholar 

  56. Nordlund B, Konradsen JR, Kull I, Borres MP, Önell A, Hedlin G, et al. IgE antibodies to animal-derived lipocalin, kallikrein and secretoglobin are markers of bronchial inflammation in severe childhood asthma. Allergy. 2012;67:661–9.

    PubMed  CAS  Google Scholar 

  57. Fahlbusch B, Rudeschko O, Szilagyi U, Schlott B, Henzgen M, Schlenvoigt G, et al. Purification and partial characterization of the major allergen, Cav p 1, from guinea pig Cavia porcellus. Allergy. 2002;57:417–22.

    PubMed  CAS  Google Scholar 

  58. Hilger C, Swiontek K, Kler S, Diederich C, Lehners C, Vogel L, et al. Evaluation of two new recombinant guinea-pig lipocalins, Cav p 2 and Cav p 3, in the diagnosis of guinea-pig allergy. Clin Exp Allergy. 2011;41:899–908.

    PubMed  CAS  Google Scholar 

  59. Arruda LK, Vailes LD, Hayden ML, Benjamin DC, Chapman MD. Cloning of cockroach allergen, Bla g 4, identifies ligand binding proteins (or calycins) as a cause of IgE antibody responses. J Biol Chem. 1995;270:31196–201.

    PubMed  CAS  Google Scholar 

  60. Fan Y, Gore JC, Redding KO, Vailes LD, Chapman MD, Schal C. Tissue localization and regulation by juvenile hormone of human allergen Bla g 4 from the German cockroach, Blattella germanica (L.). Insect Mol Biol. 2005;14:45–53.

    PubMed  CAS  Google Scholar 

  61. Arruda LK, Vailes LD, Platts-Mills TA, Hayden ML, Chapman MD. Induction of IgE antibody responses by glutathione S-transferase from the German cockroach (Blattella germanica). J Biol Chem. 1997;272:20907–12.

    PubMed  CAS  Google Scholar 

  62. Huang CH, Liew LM, Mah KW, Kuo IC, Lee BW, Chua KY. Characterization of glutathione S-transferase from dust mite, Der p 8 and its immunoglobulin E cross-reactivity with cockroach glutathione S-transferase. Clin Exp Allergy. 2006;36:369–76.

    PubMed  CAS  Google Scholar 

  63. Santiago HC, Leevan E, Bennuru S, Ribeiro-Gomes F, Mueller E, Wilson M, et al. Molecular mimicry between cockroach and helminth glutathione S-transferases promotes cross-reactivity and cross-sensitization. J Allergy Clin Immunol. 2012;130:248–56. This is an intereseting study which showed that filarial infection in humans was associated with increased prevalence of cross-reactive IgE responses to Bla g 5 (cockroach GST), with possible clinical implications. Experimentally, mice infected with filaria developed anti-filaria GST IgE and showed immediate skin test reactivity to Bla g 5. It was shown that cockroach and helminth GST cross-react because of remarkable molecular and structural similarities.

    PubMed Central  PubMed  CAS  Google Scholar 

  64. Santos AB, Chapman MD, Aalberse RC, Vailes LD, Ferriani VP, Oliver C, et al. Cockroach allergens and asthma in Brazil: identification of tropomyosin as a major allergen with potential cross-reactivity with mite and shrimp allergens. J Allergy Clin Immunol. 1999;104:329–37.

    PubMed  CAS  Google Scholar 

  65. Reese G, Ayuso R, Lehrer SB. Tropomyosin: an invertebrate pan-allergen. Int Arch Allergy Immunol. 1999;119:247–58.

    PubMed  CAS  Google Scholar 

  66. Santos AB, Rocha GM, Oliver C, Ferriani VP, Lima RC, Palma MS, et al. Cross-reactive IgE antibody responses to tropomyosins from Ascaris lumbricoides and cockroach. J Allergy Clin Immunol. 2008;121:1040–6.

    PubMed  CAS  Google Scholar 

  67. Shanti KN, Martin BM, Nagpal S, Metcalfe DD, Rao PV. Identification of tropomyosin as the major shrimp allergen and characterization of its IgE-binding epitopes. J Immunol. 1993;151:5354–63.

    PubMed  CAS  Google Scholar 

  68. Asturias JA, Gómez-Bayón N, Arilla MC, Martínez A, Palacios R, Sánchez-Gascón F, et al. Molecular characterization of American cockroach tropomyosin (Periplaneta americana allergen 7), a cross-reactive allergen. J Immunol. 1999;162:4342–8.

    PubMed  CAS  Google Scholar 

  69. Leung PS, Chu KH, Chow WK, Ansari A, Bandea CI, Kwan HS, et al. Cloning, expression, and primary structure of Metapenaeus ensis tropomyosin, the major heat-stable shrimp allergen. J Allergy Clin Immunol. 1994;94:882–90.

    PubMed  CAS  Google Scholar 

  70. Lopata AL, O'Hehir RE, Lehrer SB. Shellfish allergy. Clin Exp Allergy. 2010;40:850–8.

    PubMed  CAS  Google Scholar 

  71. Yang AC, Arruda LK, Santos AB, Barbosa MC, Chapman MD, Galvão CE, et al. Measurement of IgE antibodies to shrimp tropomyosin is superior to skin prick testing with commercial extract and measurement of IgE to shrimp for predicting clinically relevant allergic reactions after shrimp ingestion. J Allergy Clin Immunol. 2010;125:872–8.

    PubMed  CAS  Google Scholar 

  72. Gámez C, Sánchez-García S, Ibáñez MD, López R, Aguado E, López E, et al. Tropomyosin IgE-positive results are a good predictor of shrimp allergy. Allergy. 2011;66:1375–83.

    PubMed  Google Scholar 

  73. Reese G, Schicktanz S, Lauer I, Randow S, Lüttkopf D, Vogel L, et al. Structural, immunological and functional properties of natural recombinant Pen a 1, the major allergen of Brown Shrimp, Penaeus aztecus. Clin Exp Allergy. 2006;36:517–24.

    PubMed  CAS  Google Scholar 

  74. Ayuso R, Reese G, Leong-Kee S, Plante M, Lehrer SB. Molecular basis of arthropod cross-reactivity: IgE-binding cross-reactive epitopes of shrimp, house dust mite and cockroach tropomyosins. Int Arch Allergy Immunol. 2002;129:38–48.

    PubMed  CAS  Google Scholar 

  75. Jenkins JA, Breiteneder H, Mills EN. Evolutionary distance from human homologs reflects allergenicity of animal food proteins. J Allergy Clin Immunol. 2007;120:1399–405.

    PubMed  CAS  Google Scholar 

  76. Hindley J, Wünschmann S, Satinover SM, Woodfolk JA, Chew FT, Chapman MD, et al. Bla g 6: a troponin C allergen from Blattella germanica with IgE binding calcium dependence. J Allergy Clin Immunol. 2006;117:1389–95.

    PubMed  CAS  Google Scholar 

  77. Ayuso R, Grishina G, Bardina L, Carrillo T, Blanco C, Ibáñez MD, et al. Myosin light chain is a novel shrimp allergen, Lit v 3. J Allergy Clin Immunol. 2008;122:795–802.

    PubMed  CAS  Google Scholar 

  78. Yu CJ, Lin YF, Chiang BL, Chow LP. Proteomics and immunological analysis of a novel shrimp allergen, Pen m 2. J Immunol. 2003;170:445–53.

    PubMed  CAS  Google Scholar 

  79. Binder M, Mahler V, Hayek B, Sperr WR, Scholler M, Prozell S, et al. Molecular and immunological characterization of arginine kinase from the Indianmeal moth, Plodia interpunctella, a novel cross-reactive invertebrate pan-allergen. J Immunol. 2001;167:5470–7.

    PubMed  CAS  Google Scholar 

  80. Wongtim S, Lehrer SB, Salvaggio JE, Horner WE. Protease activity in cockroach and basidiomycete allergen extracts. Allergy Proc. 1993;14:263–8.

    PubMed  CAS  Google Scholar 

  81. Sudha VT, Arora N, Gaur SN, Pasha S, Singh BP. Identification of a serine protease as a major allergen (Per a 10) of Periplaneta americana. Allergy. 2008;63:768–76.

    PubMed  CAS  Google Scholar 

  82. Sudha VT, Arora N, Singh BP. Serine protease activity of Per a 10 augments allergen-induced airway inflammation in a mouse model. Eur J Clin Invest. 2009;39:507–16.

    PubMed  CAS  Google Scholar 

  83. Goel C, Govindaraj D, Singh BP, Farooque A, Kalra N, Arora N. Serine protease Per a 10 from Periplaneta americana bias dendritic cells towards type 2 by upregulating CD86 and low IL-12 secretions. Clin Exp Allergy. 2012;42:412–22.

    PubMed  CAS  Google Scholar 

  84. Govindaraj D, Gaur SN, Arora N. Characterization of recombinant Per a 10 from Periplaneta americana. Clin Vaccine Immunol. 2013;20:262–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  85. Patterson ML, Slater JE. Characterization and comparison of commercially available German and American cockroach allergen extracts. Clin Exp Allergy. 2002;32:721–7.

    PubMed  CAS  Google Scholar 

  86. Slater JE, James R, Pongracic JA, Liu AH, Sarpong S, Sampson HA, et al. Biological potency of German cockroach allergen extracts determined in an inner city population. Clin Exp Allergy. 2007;37:1033–9.

    PubMed  CAS  Google Scholar 

  87. Lopes MI, Miranda PJ, Sarinho E. Use of the skin prick test and specific immunoglobulin E for the diagnosis of cockroach allergy. J Pediatr (Rio J). 2006;82(3):204–9.

    Google Scholar 

  88. Londres MI, Sarinho FW, Miranda PJ, Solé D, Sarinho E. Allergy to cockroaches: challenges in diagnosis. Clin Lab. 2011;57:969–74.

    PubMed  Google Scholar 

  89. Portnoy J, Chew GL, Phipatanakul W, Williams PB, Grimes C, Kennedy K, et al. Environmental assessment and exposure reduction of cockroaches: A practice parameter. J Allergy Clin Immunol. 2013;132:802–8. An excellent review developed by the Joint Task Force on Practice Parameters, representing the American Academy of Allergy, Asthma & Immunology (AAAAI), the American College of Allergy, Asthma & Immunology (ACAAI), and the Joint Council of Allergy, Asthma & Immunology on assessment of cockroach exposure and evidence-based recommendations to decrease levels of cockroach allergens in the environment, which could be beneficial to patients with cockroach-induced asthma.

    PubMed  Google Scholar 

  90. Nowak-Wegrzyn AH, Bencharitiwong R, Schwarz J, David G, Eggleston P, Gergen PJ, et al. Mediator release assay for assessment of biological potency of German cockroach allergen extracts. J Allergy Clin Immunol. 2009;123:949–55.

    PubMed Central  PubMed  CAS  Google Scholar 

  91. Satinover SM, Reefer AJ, Pomés A, Chapman MD, Platts-Mills TA, Woodfolk JA. Specific IgE and IgG antibody-binding patterns to recombinant cockroach allergens. J Allergy Clin Immunol. 2005;115:803–9.

    PubMed  CAS  Google Scholar 

  92. Pittner G, Vrtala S, Thomas WR, Weghofer M, Kundi M, Horak F, et al. Component-resolved diagnosis of house-dust mite allergy with purified natural and recombinant mite allergens. Clin Exp Allergy. 2004;34:597–603.

    PubMed  CAS  Google Scholar 

  93. Weghofer M, Thomas WR, Kronqvist M, Mari A, Purohit A, Pauli G, et al. Variability of IgE reactivity profiles among European mite allergic patients. Eur J Clin Invest. 2008;38:959–65.

    PubMed  CAS  Google Scholar 

  94. Westritschnig K, Sibanda E, Thomas W, Auer H, Aspock H, Pittner G, et al. Analysis of the sensitization profile towards allergens in central Africa. Clin Exp Allergy. 2003;33:22–7.

    PubMed  CAS  Google Scholar 

  95. Sereda MJ, Hartmann S, Lucius R. Helminths and allergy: the example of tropomyosin. Trends Parasitol. 2008;24:272–8.

    PubMed  CAS  Google Scholar 

  96. Santiago HC, Bennuru S, Boyd A, Eberhard M, Nutman TB. Structural and immunologic cross-reactivity among filarial and mite tropomyosin: implications for the hygiene hypothesis. J Allergy Clin Immunol. 2011;127:479–86.

    PubMed Central  PubMed  CAS  Google Scholar 

  97. Fitzsimmons CM, Dunne DW. Survival of the fittest: allergology or parasitology? Trends Parasitol. 2009;25:447–51.

    PubMed  Google Scholar 

  98. Lee MF, Song PP, Hwang GY, Lin SJ, Chen YH. Sensitization to Per a 2 of the American cockroach correlates with more clinical severity among airway allergic patients in Taiwan. Ann Allergy Asthma Immunol. 2012;108:243–8.

    PubMed  CAS  Google Scholar 

  99. Kang BC, Johnson J, Morgan C, Chang JL. The role of immunotherapy in cockroach asthma. J Asthma. 1988;25:205–18.

    PubMed  CAS  Google Scholar 

  100. Alonso A, Albonico JF, Mouchian K, Scavini LM, Iraneta SG, Pionetti CH. Imunological changes during cockroach immunotherapy. J Investig Allergol Clin Immunol. 1999;9:299–304.

    PubMed  CAS  Google Scholar 

  101. Srivastava D, Gaur SN, Arora N, Singh BP. Clinico-immunological changes post-immunotherapy with Periplaneta americana. Eur J Clin Invest. 2011;41:879–88.

    PubMed  CAS  Google Scholar 

  102. Wood RA, Togias A, Wildfire J, Visness CM, Matsui EC, Gruchalla R, et al. Development of cockroach immunotherapy by the Inner-City Asthma Consortium. J Allergy Clin Immunol. 2013. doi:10.1016/j.jaci.2013.08.047. This very recent study reports the outcomes of four pilot studies on SLIT and SCIT using B.germanica extract. The results showed that IT with cockroach is safe, and that SCIT appears to be more effective in terms of inducing immunological responses than SLIT. The studies reported in this publication provide the basis for continuing investigation of the efficacy of IT in treatment of cockroach-allergic patients with asthma, rhinitis, or both.

    Google Scholar 

  103. Pomés A, Chapman MD, Vailes LD, Blundell TL, Dhanaraj V. Cockroach allergen Bla g 2: structure, function, and implications for allergic sensitization. Am J Respir Crit Care Med. 2002;165:391–7.

    PubMed  Google Scholar 

  104. Jeong KY, Lee J, Lee IY, Ree HI, Hong CS, Yong TS. Allergenicity of recombinant Bla g 7, German cockroach tropomyosin. Allergy. 2003;58:1059–63.

    PubMed  CAS  Google Scholar 

  105. Jeong KY, Lee J, Lee IY, Ree HI, Hong CS, Yong TS. Analysis of amino acid sequence variations and immunoglobulin E-binding epitopes of German cockroach tropomyosin. Clin Diagn Lab Immunol. 2004;11:874–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  106. Wu CH, Hsieh MJ, Huang JH, Luo SF. Identification of low molecular weight allergens of American cockroach and production of monoclonal antibodies. Ann Allergy Asthma Immunol. 1996;76:195–203.

    PubMed  CAS  Google Scholar 

  107. Wu CH, Wang NM, Lee MF. Sequencing analysis of a cDNA encoding the American cockroach (Periplaneta americana) Cr-PII allergen. Allergy Clin Immunol Int Suppl. 1997;4:11.

    Google Scholar 

  108. Wang NM, Lee MF, Wu CH. Immunologic characterization of a recombinant American cockroach (Periplaneta americana) Per a 1 (Cr-PII) allergen. Allergy. 1999;54:119–27.

    PubMed  CAS  Google Scholar 

  109. Sookrung N, Chaicumpa W, Tungtrongchitr A, Vichyanond P, Bunnag C, Ramasoota P, et al. Periplaneta americana arginine kinase as a major cockroach allergen among Thai patients with major cockroach allergies. Environ Health Perspect. 2006;114:875–80.

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research carried out in Brazil by L. Karla Arruda has been supported by São Paulo State Research Funding Agency (FAPESP) and Brazilian National Research Council – National Institutes of Science and Technology, Institute of Investigation in Immunology (CNPq–INCT–iii). Part of the research reported in this publication was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number R01AI077653 (PI: AP and MDC). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Compliance with Ethics Guidelines

Conflict of Interest

Martin D. Chapman has received NIH grant support (no. AI077653, through Indoor Biotechnologies, Inc.), has served on boards for Virginia Bio and the Charlottesville Business Innovation Council, is employed as the president/CEO of Indoor Biotechnologies, Inc., holds US patent 5,869,288 (through Indoor Biotechnologies, Inc.), holds stock/stock options in Indoor Biotechnologies, Inc., and has received royalties from the University of Virginia.

Anna Pomés has received NIAID/NIH grant support (no. R01AI077653) and is employed by Indoor Biotechnologies, Inc.

L. Karla Arruda, Michelle C.R. Barbosa, Ana Beatriz R. Santos, and Adriana S. Moreno declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with animal subjects performed by any of the authors. With regard to the authors’ research cited in this paper, all procedures were followed in accordance with the ethical standards of the responsible committee on human experimentation and with the Helsinki Declaration of 1975, as revised in 2000 and 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Karla Arruda.

Additional information

This article is part of the Topical Collection on Allergens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arruda, L.K., Barbosa, M.C.R., Santos, A.B.R. et al. Recombinant Allergens for Diagnosis of Cockroach Allergy. Curr Allergy Asthma Rep 14, 428 (2014). https://doi.org/10.1007/s11882-014-0428-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-014-0428-6

Keywords

Navigation