Skip to main content

Advertisement

Log in

House Dust Mite Interactions with Airway Epithelium: Role in Allergic Airway Inflammation

  • ALLERGENS (RK BUSH, SECTION EDITOR)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

House dust mite (HDM) allergens are the most prevalent allergens associated with asthma and rhinitis around the world. The mechanisms of allergic sensitization and allergic airway inflammation after exposure to HDM have been studied extensively, but many questions remain unanswered. Airway epithelial cells are the first line of defense against external antigens and are considered an important player in the development of allergic airway inflammation. Both genetic susceptibility to allergic sensitization and HDM composition play decisive roles in the outcome of HDM-epithelium interactions, especially regarding airway epithelial dysfunction and allergic inflammation. Interactions between HDM and the airway epithelium have consequences for both development of allergy and asthma and development of allergic airway inflammation. This review will describe in detail these interactions and will identify issues that require more study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gregory LG, Lloyd CM. Orchestrating house dust mite-associated allergy in the lung. Trends Immunol. 2011;32(9):402–11.

    Article  PubMed  CAS  Google Scholar 

  2. Arlian LG, Bernstein IL, Geis DP, Vyszenski-Moher DL, Gallagher JS, Martin B. Investigations of culture medium-free house dust mites. III. Antigens and allergens of body and fecal extract of Dermatophagoides farinae. J Allergy Clin Immunol. 1987;79(3):457–66.

    Article  PubMed  CAS  Google Scholar 

  3. Arlian LG, Bernstein IL, Vyszenski-Moher DL, Gallagher JS. Investigations of culture medium-free house dust mites. IV. Cross antigenicity and allergenicity between the house dust mites, Dermatophagoides farinae and D. pteronyssinus. J Allergy Clin Immunol. 1987;79(3):467–76.

    Article  PubMed  CAS  Google Scholar 

  4. Post S, Nawijn MC, Hackett TL, Baranowska M, Gras R, van Oosterhout AJ, et al. The composition of house dust mite is critical for mucosal barrier dysfunction and allergic sensitisation. Thorax. 2012;67(6):488–95.

    Article  PubMed  CAS  Google Scholar 

  5. Parker D, Prince A. Innate immunity in the respiratory epithelium. Am J Respir Cell Mol Biol. 2011;45(2):189–201.

    Article  PubMed  CAS  Google Scholar 

  6. Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med. 2009;15(4):410–6.

    Article  PubMed  CAS  Google Scholar 

  7. Hongjia L, Qingling G, Meiying L, Weixuan W, Lihong Z, Yongsheng G, et al. House dust mite regulate the lung inflammation of asthmatic mice through TLR4 pathway in airway epithelial cells. Cell Biochem Funct. 2010;28(7):597–603.

    Article  PubMed  Google Scholar 

  8. Trompette A, Divanovic S, Visintin A, Blanchard C, Hegde RS, Madan R, et al. Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature. 2009;457(7229):585–8.

    Article  PubMed  CAS  Google Scholar 

  9. Trivedi B, Valerio C, Slater JE. Endotoxin content of standardized allergen vaccines. J Allergy Clin Immunol. 2003;111(4):777–83.

    Article  PubMed  CAS  Google Scholar 

  10. Valerio CR, Murray P, Arlian LG, Slater JE. Bacterial 16S ribosomal DNA in house dust mite cultures. J Allergy Clin Immunol. 2005;116(6):1296–300.

    Article  PubMed  CAS  Google Scholar 

  11. Ryu JH, Yoo JY, Kim MJ, Hwang SG, Ahn KC, Ryu JC, et al. Distinct TLR-mediated pathways regulate house dust mite-induced allergic disease in the upper and lower airways. J Allergy Clin Immunol. 2013;131(2):549–61.

    Article  PubMed  CAS  Google Scholar 

  12. Nathan AT, Peterson EA, Chakir J, Wills-Karp M. Innate immune responses of airway epithelium to house dust mite are mediated through beta-glucan-dependent pathways. J Allergy Clin Immunol. 2009;123(3):612–8.

    Article  PubMed  CAS  Google Scholar 

  13. Sun G, Stacey MA, Schmidt M, Mori L, Mattoli S. Interaction of mite allergens Der p3 and Der p9 with protease-activated receptor-2 expressed by lung epithelial cells. J Immunol. 2001;167(2):1014–21.

    PubMed  CAS  Google Scholar 

  14. Vliagoftis H, Befus AD, Hollenberg MD, Moqbel R. Airway epithelial cells release eosinophil survival-promoting factors (GM-CSF) after stimulation of proteinase-activated receptor 2. J Allergy Clin Immunol. 2001;107(4):679–85.

    Article  PubMed  CAS  Google Scholar 

  15. Rudack C, Steinhoff M, Mooren F, Buddenkotte J, Becker K, von Eiff C, et al. PAR-2 activation regulates IL-8 and GRO-alpha synthesis by NF-kappaB, but not RANTES, IL-6, eotaxin or TARC expression in nasal epithelium. Clin Exp Allergy. 2007;37(7):1009–22.

    Article  PubMed  CAS  Google Scholar 

  16. Matsuwaki Y, Wada K, White T, Moriyama H, Kita H. Alternaria fungus induces the production of GM-CSF, interleukin-6 and interleukin-8 and calcium signaling in human airway epithelium through protease-activated receptor 2. Int Arch Allergy Immunol. 2012;158 Suppl 1:19–29.

    Article  PubMed  CAS  Google Scholar 

  17. van den Berge M, ten Hacken NH, Cohen J, Douma WR, Postma DS. Small airway disease in asthma and COPD: clinical implications. Chest. 2011;139(2):412–23.

    Article  PubMed  Google Scholar 

  18. Gras D, Bourdin A, Vachier I, de Senneville L, Bonnans C, Chanez P. An ex vivo model of severe asthma using reconstituted human bronchial epithelium. J Allergy Clin Immunol. 2012;129(5):1259–1266.

    Article  PubMed  Google Scholar 

  19. Lordan JL, Bucchieri F, Richter A, Konstantinidis A, Holloway JW, Thornber M, et al. Cooperative effects of Th2 cytokines and allergen on normal and asthmatic bronchial epithelial cells. J Immunol. 2002;169(1):407–14.

    PubMed  CAS  Google Scholar 

  20. Vroling AB, Jonker MJ, Luiten S, Breit TM, Fokkens WJ, van Drunen CM. Primary nasal epithelium exposed to house dust mite extract shows activated expression in allergic individuals. Am J Respir Cell Mol Biol. 2008;38(3):293–9.

    Article  PubMed  CAS  Google Scholar 

  21. Pichavant M, Charbonnier AS, Taront S, Brichet A, Wallaert B, Pestel J, et al. Asthmatic bronchial epithelium activated by the proteolytic allergen Der p 1 increases selective dendritic cell recruitment. J Allergy Clin Immunol. 2005;115(4):771–8.

    Article  PubMed  CAS  Google Scholar 

  22. Gu L, Tseng S, Horner RM, Tam C, Loda M, Rollins BJ. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature. 2000;404(6776):407–11.

    Article  PubMed  CAS  Google Scholar 

  23. Bush RK. Indoor allergens, environmental avoidance, and allergic respiratory disease. Allergy Asthma Proc. 2008;29(6):575–9.

    Article  PubMed  Google Scholar 

  24. Willart MA, Deswarte K, Pouliot P, Braun H, Beyaert R, Lambrecht BN, et al. Interleukin-1 controls allergic sensitization to inhaled house dust mite via the epithelial release of GM-CSF and IL-33. J Exp Med. 2012;209(8):1505–17.

    Article  PubMed  CAS  Google Scholar 

  25. Chu DK, Llop-Guevara A, Walker TD, Flader K, Goncharova S, Boudreau JE, et al. IL-33, but not thymic stromal lymphopoietin or IL-25, is central to mite and peanut allergic sensitization. J Allergy Clin Immunol. 2013;131(1):187–200.

    Article  PubMed  CAS  Google Scholar 

  26. Hoshino A, Tanaka Y, Akiba H, Asakura Y, Mita Y, Sakurai T, et al. Critical role for OX40 ligand in the development of pathogenic Th2 cells in a murine model of asthma. Eur J Immunol. 2003;33(4):861–9.

    Article  PubMed  CAS  Google Scholar 

  27. Ito T, Wang YH, Duramad O, Hori T, Delespesse GJ, Watanabe N, et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J Exp Med. 2005;202(9):1213–23.

    Article  PubMed  CAS  Google Scholar 

  28. Kouzaki H, O'Grady SM, Lawrence CB, Kita H. Proteases induce production of thymic stromal lymphopoietin by airway epithelial cells through protease-activated receptor-2. J Immunol. 2009;183(2):1427–34.

    Article  PubMed  CAS  Google Scholar 

  29. van de Pol MA, Lutter R, van Ree R, van der Zee JS. Increase in allergen-specific IgE and ex vivo Th2 responses after a single bronchial challenge with house dust mite in allergic asthmatics. Allergy. 2012;67(1):67–73.

    Article  PubMed  Google Scholar 

  30. Hatzivlassiou M, Grainge C, Kehagia V, Lau L, Howarth PH. The allergen specificity of the late asthmatic reaction. Allergy. 2010;65(3):355–8.

    Article  PubMed  CAS  Google Scholar 

  31. Van Der Veen MJ, Jansen HM, Aalberse RC, van der Zee JS. Der p 1 and Der p 2 induce less severe late asthmatic responses than native Dermatophagoides pteronyssinus extract after a similar early asthmatic response. Clin Exp Allergy. 2001;31(5):705–14.

    Article  Google Scholar 

  32. King C, Brennan S, Thompson PJ, Stewart GA. Dust mite proteolytic allergens induce cytokine release from cultured airway epithelium. J Immunol. 1998;161(7):3645–51.

    PubMed  CAS  Google Scholar 

  33. Osterlund C, Gronlund H, Polovic N, Sundstrom S, Gafvelin G, Bucht A. The non-proteolytic house dust mite allergen Der p 2 induce NF-kappaB and MAPK dependent activation of bronchial epithelial cells. Clin Exp Allergy. 2009;39(8):1199–208.

    Article  PubMed  CAS  Google Scholar 

  34. Heijink IH, Marcel Kies P, van Oosterhout AJ, Postma DS, Kauffman HF, Vellenga E. Der p, IL-4, and TGF-beta cooperatively induce EGFR-dependent TARC expression in airway epithelium. Am J Respir Cell Mol Biol. 2007;36(3):351–9.

    Article  PubMed  CAS  Google Scholar 

  35. Wong CK, Li ML, Wang CB, Ip WK, Tian YP, Lam CW. House dust mite allergen Der p 1 elevates the release of inflammatory cytokines and expression of adhesion molecules in co-culture of human eosinophils and bronchial epithelial cells. Int Immunol. 2006;18(8):1327–35.

    Article  PubMed  CAS  Google Scholar 

  36. Asokananthan N, Graham PT, Stewart DJ, Bakker AJ, Eidne KA, Thompson PJ, et al. House dust mite allergens induce proinflammatory cytokines from respiratory epithelial cells: the cysteine protease allergen, Der p 1, activates protease-activated receptor (PAR)-2 and inactivates PAR-1. J Immunol. 2002;169(8):4572–8.

    PubMed  CAS  Google Scholar 

  37. Sehmi R, Cromwell O, Wardlaw AJ, Moqbel R, Kay AB. Interleukin-8 is a chemo-attractant for eosinophils purified from subjects with a blood eosinophilia but not from normal healthy subjects. Clin Exp Allergy. 1993;23(12):1027–36.

    Article  PubMed  CAS  Google Scholar 

  38. Ordonez CL, Shaughnessy TE, Matthay MA, Fahy JV. Increased neutrophil numbers and IL-8 levels in airway secretions in acute severe asthma: Clinical and biologic significance. Am J Respir Crit Care Med. 2000;161(4 Pt 1):1185–90.

    Article  PubMed  CAS  Google Scholar 

  39. Ye YL, Wu HT, Lin CF, Hsieh CY, Wang JY, Liu FH, et al. Dermatophagoides pteronyssinus 2 regulates nerve growth factor release to induce airway inflammation via a reactive oxygen species-dependent pathway. Am J Physiol Lung Cell Mol Physiol. 2011;300(2):216–24.

    Article  Google Scholar 

  40. Ogawa H, Azuma M, Uehara H, Takahashi T, Nishioka Y, Sone S, et al. Nerve growth factor derived from bronchial epithelium after chronic mite antigen exposure contributes to airway hyperresponsiveness by inducing hyperinnervation, and is inhibited by in vivo siRNA. Clin Exp Allergy. 2012;42(3):460–70.

    Article  PubMed  CAS  Google Scholar 

  41. Hahn C, Islamian AP, Renz H, Nockher WA. Airway epithelial cells produce neurotrophins and promote the survival of eosinophils during allergic airway inflammation. J Allergy Clin Immunol. 2006;117(4):787–94.

    Article  PubMed  CAS  Google Scholar 

  42. Phipps S, Benyahia F, Ou TT, Barkans J, Robinson DS, Kay AB. Acute allergen-induced airway remodeling in atopic asthma. Am J Respir Cell Mol Biol. 2004;31(6):626–32.

    Article  PubMed  CAS  Google Scholar 

  43. Johnson JR, Wiley RE, Fattouh R, Swirski FK, Gajewska BU, Coyle AJ, et al. Continuous exposure to house dust mite elicits chronic airway inflammation and structural remodeling. Am J Respir Crit Care Med. 2004;169(3):378–85.

    Article  PubMed  Google Scholar 

  44. Heijink IH, Postma DS, Noordhoek JA, Broekema M, Kapus A. House dust mite-promoted epithelial-to-mesenchymal transition in human bronchial epithelium. Am J Respir Cell Mol Biol. 2010;42(1):69–79.

    Article  PubMed  CAS  Google Scholar 

  45. Winter MC, Shasby SS, Ries DR, Shasby DM. PAR2 activation interrupts E-cadherin adhesion and compromises the airway epithelial barrier: protective effect of beta-agonists. Am J Physiol Lung Cell Mol Physiol. 2006;291(4):628–35.

    Article  Google Scholar 

  46. Chen ZG, Zhang TT, Li HT, Chen FH, Zou XL, Ji JZ, et al. Neutralization of TSLP inhibits airway remodeling in a murine model of allergic asthma induced by chronic exposure to house dust mite. PLoS One. 2013;8(1):e51268.

    Article  PubMed  CAS  Google Scholar 

  47. Tomlinson KL, Davies GC, Sutton DJ, Palframan RT. Neutralisation of interleukin-13 in mice prevents airway pathology caused by chronic exposure to house dust mite. PLoS ONE [Electronic Resource] 2010;5(10).

  48. Gregory LG, Jones CP, Walker SA, Sawant D, Gowers KH, Campbell GA, et al. IL-25 drives remodelling in allergic airways disease induced by house dust mite. Thorax. 2013;68(1):82–90.

    Article  PubMed  Google Scholar 

  49. Bunnett NW. Protease-activated receptors: how proteases signal to cells to cause inflammation and pain. Semin Thromb Hemost. 2006;32 Suppl 1:39–48.

    Article  PubMed  CAS  Google Scholar 

  50. Vliagoftis H, Schwingshackl A, Milne CD, Duszyk M, Hollenberg MD, Wallace JL, et al. Proteinase-activated receptor-2-mediated matrix metalloproteinase-9 release from airway epithelial cells. J Allergy Clin Immunol. 2000;106(3):537–45.

    Article  PubMed  CAS  Google Scholar 

  51. Schmidlin F, Amadesi S, Dabbagh K, Lewis DE, Knott P, Bunnett NW, et al. Protease-activated receptor 2 mediates eosinophil infiltration and hyperreactivity in allergic inflammation of the airway. J Immunol. 2002;169(9):5315–21.

    PubMed  Google Scholar 

  52. Ebeling C, Forsythe P, Ng J, Gordon JR, Hollenberg M, Vliagoftis H. Proteinase-activated receptor 2 activation in the airways enhances antigen-mediated airway inflammation and airway hyperresponsiveness through different pathways. J Allergy Clin Immunol. 2005;115(3):623–30.

    Article  PubMed  CAS  Google Scholar 

  53. Ebeling C, Lam T, Gordon JR, Hollenberg MD, Vliagoftis H. Proteinase-activated receptor-2 promotes allergic sensitization to an inhaled antigen through a TNF-mediated pathway. J Immunol. 2007;179(5):2910–7.

    PubMed  CAS  Google Scholar 

  54. Arizmendi NG, Abel M, Mihara K, Davidson C, Polley D, Nadeem A, et al. Mucosal allergic sensitization to cockroach allergens is dependent on proteinase activity and proteinase-activated receptor-2 activation. J Immunol. 2011;186(5):3164–72.

    Article  PubMed  CAS  Google Scholar 

  55. Ostrowska E, Sokolova E, Reiser G. PAR-2 activation and LPS synergistically enhance inflammatory signaling in airway epithelial cells by raising PAR expression level and interleukin-8 release. Am J Physiol Lung Cell Mol Physiol. 2007;293(5):1208–18.

    Article  Google Scholar 

  56. Dai X, Sayama K, Tohyama M, Shirakata Y, Hanakawa Y, Tokumaru S, et al. Mite allergen is a danger signal for the skin via activation of inflammasome in keratinocytes. J Allergy Clin Immunol. 2011;127(3):806–14.

    Article  PubMed  CAS  Google Scholar 

  57. Kimura T, Sekido M, Chimura N, Shibata S, Kondo N, Kamishina H, et al. Production of GM-CSF mediated by cysteine protease of Der f in canine keratinocytes. J Vet Med Sci. 2012;74(8):1033–6.

    Article  PubMed  CAS  Google Scholar 

  58. Kato T, Takai T, Fujimura T, Matsuoka H, Ogawa T, Murayama K, et al. Mite serine protease activates protease-activated receptor-2 and induces cytokine release in human keratinocytes. Allergy. 2009;64(9):1366–74.

    Article  PubMed  CAS  Google Scholar 

  59. Iwakiri K, Ghazizadeh M, Jin E, Fujiwara M, Takemura T, Takezaki S, et al. Human airway trypsin-like protease induces PAR-2-mediated IL-8 release in psoriasis vulgaris. J Invest Dermatol. 2004;122(4):937–44.

    Article  PubMed  CAS  Google Scholar 

  60. Hara Y, Shoji J, Hori S, Ishimori A, Kato H, Inada N, et al. Evaluation of eosinophilic inflammation in a novel murine atopic keratoconjunctivitis model induced by crude Dermatophagoides farinae antigen. Allergol intern. 2012;61(2):331–8.

    CAS  Google Scholar 

  61. Mautino G, Capony F, Bousquet J, Vignola AM. Balance in asthma between matrix metalloproteinases and their inhibitors. J Allergy Clin Immunol. 1999;104(3 Pt 1):530–3.

    Article  PubMed  CAS  Google Scholar 

  62. Shin SY, Choi GS, Lee KH, Kim SW, Won KY, Lee JH, et al. Changes of alpha1-antitrypsin levels in allergen-induced nasal inflammation. Clin Exp Otorhinolaryngol. 2011;4(1):33–9.

    Article  PubMed  Google Scholar 

  63. Kalsheker NA, Deam S, Chambers L, Sreedharan S, Brocklehurst K, Lomas DA. The house dust mite allergen Der p1 catalytically inactivates alpha 1-antitrypsin by specific reactive centre loop cleavage: a mechanism that promotes airway inflammation and asthma. Biochem Biophys Res Commun. 1996;221(1):59–61.

    Article  PubMed  CAS  Google Scholar 

  64. Brown A, Farmer K, MacDonald L, Kalsheker N, Pritchard D, Haslett C, et al. House dust mite Der p 1 downregulates defenses of the lung by inactivating elastase inhibitors. Am J Respir Cell Mol Biol. 2003;29(3 Pt 1):381–9.

    Article  PubMed  CAS  Google Scholar 

  65. Sakata Y, Arima K, Takai T, Sakurai W, Masumoto K, Yuyama N, et al. The squamous cell carcinoma antigen 2 inhibits the cysteine proteinase activity of a major mite allergen, Der p 1. J Biol Chem. 2004;279(7):5081–7.

    Article  PubMed  CAS  Google Scholar 

  66. Yuyama N, Davies DE, Akaiwa M, Matsui K, Hamasaki Y, Suminami Y, et al. Analysis of novel disease-related genes in bronchial asthma. Cytokine. 2002;19(6):287–96.

    Article  PubMed  CAS  Google Scholar 

  67. Kato T, Takai T, Mitsuishi K, Okumura K, Ogawa H. Cystatin A inhibits IL-8 production by keratinocytes stimulated with Der p 1 and Der f 1: biochemical skin barrier against mite cysteine proteases. J Allergy Clin Immunol. 2005;116(1):169–76.

    Article  PubMed  CAS  Google Scholar 

  68. Seto T, Takai T, Ebihara N, Matsuoka H, Wang XL, Ishii A, et al. SLPI prevents cytokine release in mite protease-exposed conjunctival epithelial cells. Biochem Biophys Res Commun. 2009;379(3):681–5.

    Article  PubMed  CAS  Google Scholar 

  69. Kauffman HF, Tomee JF, van de Riet MA, Timmerman AJ, Borger P. Protease-dependent activation of epithelial cells by fungal allergens leads to morphologic changes and cytokine production. J Allergy Clin Immunol. 2000;105(6 Pt 1):1185–93.

    Article  PubMed  CAS  Google Scholar 

  70. Chen JC, Chuang JG, Su YY, Chiang BL, Lin YS, Chow LP. The protease allergen Pen c 13 induces allergic airway inflammation and changes in epithelial barrier integrity and function in a murine model. J Biol Chem. 2011;286(30):26667–79.

    Article  PubMed  CAS  Google Scholar 

  71. Boldogh I, Bacsi A, Choudhury BK, Dharajiya N, Alam R, Hazra TK, et al. ROS generated by pollen NADPH oxidase provide a signal that augments antigen-induced allergic airway inflammation. J Clin Invest. 2005;115(8):2169–79.

    Article  PubMed  CAS  Google Scholar 

  72. Blume C, Swindle EJ, Dennison P, Jayasekera NP, Dudley S, Monk P, et al. Barrier responses of human bronchial epithelial cells to grass pollen exposure. Eur Respir J 2012 Nov 8.

  73. Roschmann KI, van Kuijen AM, Luiten S, Jonker MJ, Breit TM, Fokkens WJ, et al. Purified Timothy grass pollen major allergen Phl p 1 may contribute to the modulation of allergic responses through a pleiotropic induction of cytokines and chemokines from airway epithelial cells. Clin Exp Immunol. 2012;167(3):413–21.

    Article  PubMed  CAS  Google Scholar 

  74. Page K. Role of cockroach proteases in allergic disease. Curr Allergy Asthma Rep. 2012;12(5):448–55.

    Article  PubMed  CAS  Google Scholar 

  75. Hong JH, Lee SI, Kim KE, Yong TS, Seo JT, Sohn MH, et al. German cockroach extract activates protease-activated receptor 2 in human airway epithelial cells. J Allergy Clin Immunol. 2004;113(2):315–9.

    Article  PubMed  CAS  Google Scholar 

  76. Page K, Ledford JR, Zhou P, Dienger K, Wills-Karp M. Mucosal sensitization to German cockroach involves protease-activated receptor-2. Respir Res. 2010;11:62.

    Article  PubMed  Google Scholar 

  77. Xiao C, Puddicombe SM, Field S, Haywood J, Broughton-Head V, Puxeddu I, et al. Defective epithelial barrier function in asthma. J Allergy Clin Immunol. 2011;128(3):549–56.

    Article  PubMed  CAS  Google Scholar 

  78. de Boer WI, Sharma HS, Baelemans SM, Hoogsteden HC, Lambrecht BN, Braunstahl GJ. Altered expression of epithelial junctional proteins in atopic asthma: possible role in inflammation. Can J Physiol Pharmacol. 2008;86(3):105–12.

    Article  PubMed  Google Scholar 

  79. Heijink IH, van Oosterhout A, Kapus A. Epidermal growth factor receptor signalling contributes to house dust mite-induced epithelial barrier dysfunction. Eur Respir J. 2010;36(5):1016–26.

    Article  PubMed  CAS  Google Scholar 

  80. Shan J, Oshima T, Chen X, Fukui H, Watari J, Miwa H. Trypsin impaired epithelial barrier function and induced IL-8 secretion through basolateral PAR-2: a lesson from a stratified squamous epithelial model. Am J Physiol Gastrointest Liver Physiol. 2012;303(10):G1105–12.

    Article  PubMed  CAS  Google Scholar 

  81. van der Merwe JQ, Hollenberg MD, MacNaughton WK. EGF receptor transactivation and MAP kinase mediate proteinase-activated receptor-2-induced chloride secretion in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2008;294(2):G441–51.

    Article  PubMed  Google Scholar 

  82. Darmoul D, Gratio V, Devaud H, Laburthe M. Protease-activated receptor 2 in colon cancer: trypsin-induced MAPK phosphorylation and cell proliferation are mediated by epidermal growth factor receptor transactivation. J Biol Chem. 2004;279(20):20927–34.

    Article  PubMed  CAS  Google Scholar 

  83. Wan H, Winton HL, Soeller C, Tovey ER, Gruenert DC, Thompson PJ, et al. Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J Clin Invest. 1999;104(1):123–33.

    Article  PubMed  CAS  Google Scholar 

  84. Cho HJ, Choi JY, Yang YM, Hong JH, Kim CH, Gee HY, et al. House dust mite extract activates apical Cl(−) channels through protease-activated receptor 2 in human airway epithelia. J Cell Biochem. 2010;109(6):1254–63.

    PubMed  CAS  Google Scholar 

  85. Sato S, Ito Y, Kondo M, Ohashi T, Ito S, Nakayama S, et al. Ion transport regulated by protease-activated receptor 2 in human airway Calu-3 epithelia. Br J Pharmacol. 2005;146(3):397–407.

    Article  PubMed  CAS  Google Scholar 

  86. Palmer ML, Lee SY, Maniak PJ, Carlson D, Fahrenkrug SC, O'Grady SM. Protease-activated receptor regulation of Cl- secretion in Calu-3 cells requires prostaglandin release and CFTR activation. Am J Physiol Cell Physiol. 2006;290(4):C1189–98.

    Article  PubMed  CAS  Google Scholar 

  87. Rievaj J, Davidson C, Nadeem A, Hollenberg M, Duszyk M, Vliagoftis H. Allergic sensitization enhances anion current responsiveness of murine trachea to PAR-2 activation. Pflugers Arch. 2012;463(3):497–509.

    Article  PubMed  CAS  Google Scholar 

  88. Swystun V, Chen L, Factor P, Siroky B, Bell PD, Matalon S. Apical trypsin increases ion transport and resistance by a phospholipase C-dependent rise of Ca2+. Am J Physiol Lung Cell Mol Physiol. 2005;288(5):L820–30.

    Article  PubMed  CAS  Google Scholar 

  89. van der Merwe JQ, Moreau F, MacNaughton WK. Protease-activated receptor-2 stimulates intestinal epithelial chloride transport through activation of PLC and selective PKC isoforms. Am J Physiol Gastrointest Liver Physiol. 2009;296(6):G1258–66.

    Article  PubMed  Google Scholar 

  90. Meyers DA. Genetics of asthma and allergy: what have we learned? J Allergy Clin Immunol. 2010;126(3):439–46. quiz 447–8.

    Article  PubMed  CAS  Google Scholar 

  91. Vercelli D. Discovering susceptibility genes for asthma and allergy. Nat Rev Immunol. 2008;8(3):169–82.

    Article  PubMed  CAS  Google Scholar 

  92. Mukherjee AB, Zhang Z. Allergic asthma: influence of genetic and environmental factors. J Biol Chem. 2011;286(38):32883–9.

    Article  PubMed  CAS  Google Scholar 

  93. Dierynck I, Bernard A, Roels H, De Ley M. Potent inhibition of both human interferon-gamma production and biologic activity by the Clara cell protein CC16. Am J Respir Cell Mol Biol. 1995;12(2):205–10.

    Article  PubMed  CAS  Google Scholar 

  94. Van Vyve T, Chanez P, Bernard A, Bousquet J, Godard P, Lauwerijs R, et al. Protein content in bronchoalveolar lavage fluid of patients with asthma and control subjects. J Allergy Clin Immunol. 1995;95(1 Pt 1):60–8.

    Article  PubMed  Google Scholar 

  95. Schiffmann E, Geetha V, Pencev D, Warabi H, Mato J, Hirata F, et al. Adherence and regulation of leukotaxis. Agents Actions Suppl. 1983;12:106–20.

    PubMed  CAS  Google Scholar 

  96. Johansson S, Wennergren G, Aberg N, Rudin A. Clara cell 16-kd protein downregulates T(H)2 differentiation of human naive neonatal T cells. J Allergy Clin Immunol. 2007;120(2):308–14.

    Article  PubMed  CAS  Google Scholar 

  97. Laing IA, de Klerk NH, Turner SW, Judge PK, Hayden CM, Landau LI, et al. Cross-sectional and longitudinal association of the secretoglobin 1A1 gene A38G polymorphism with asthma phenotype in the Perth Infant Asthma Follow-up cohort. Clin Exp Allergy. 2009;39(1):62–71.

    Article  PubMed  CAS  Google Scholar 

  98. Stacey MA, Sun G, Vassalli G, Marini M, Bellini A, Mattoli S. The allergen Der p1 induces NF-kappaB activation through interference with IkappaB alpha function in asthmatic bronchial epithelial cells. Biochem Biophys Res Commun. 1997;236(2):522–6.

    Article  PubMed  CAS  Google Scholar 

  99. Butler MW, Fukui T, Salit J, Shaykhiev R, Mezey JG, Hackett NR, et al. Modulation of cystatin A expression in human airway epithelium related to genotype, smoking, COPD, and lung cancer. Cancer Res. 2011;71(7):2572–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

Vivek D. Gandhi declares that he has no conflict of interest.

Courtney Davidson declares that she has no conflict of interest.

Muhammad Asaduzzaman declares that he has no conflict of interest.

Drew Nahirney declares that he has no conflict of interest.

Harissios Vliagoftis has received grant support from the CIHR, National Sanitarium Association, Ironwood, Merck & Co., and AstraZeneca, and has received honoraria from Pfizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harissios Vliagoftis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gandhi, V.D., Davidson, C., Asaduzzaman, M. et al. House Dust Mite Interactions with Airway Epithelium: Role in Allergic Airway Inflammation. Curr Allergy Asthma Rep 13, 262–270 (2013). https://doi.org/10.1007/s11882-013-0349-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-013-0349-9

Keywords

Navigation