Skip to main content

Advertisement

Log in

Personalised Medicine and Asthma Diagnostics/Management

  • IMMUNOLOGIC/DIAGNOSTIC TESTS IN ALLERGY (JL SCHMITZ, SECTION EDITOR)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Human beings come in all shapes and sizes. Heterogeneity makes life interesting, but leads to inter-individual variation in disease susceptibility and response to therapy. One major health challenge is to develop “personalised medicine”; therapeutic interventions tailored to an individual to ensure optimal treatment of disease. Asthma is a heterogeneous disease with several different phenotypes triggered by multiple gene-environment interactions. Inhaled corticosteroids and β2-agonists have been the mainstay asthma therapies for 30 years, but they are not effective in all patients, while high costs and side-effects also drive the need for better targeted treatment of asthma. Pharmacogenetics is the study of variations in the genetic code for proteins in signaling pathways targeted by pharmacological therapies. Biomarkers are biological markers obtained from patients that can aid in asthma diagnosis, prediction of treatment response, and monitoring of disease control. This review presents a broad discussion of the use of genetic profiling and biomarkers to better diagnose, monitor, and tailor the treatment of asthmatics. We also discuss possible future developments in personalised medicine, including the construction of artificially engineered airway tissues containing a patient’s own cells for use as personalised drug-testing tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Paper of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wenzel SE. Asthma: Defining of the persistent adult phenotypes. Lancet. 2006;368(9537):804–13.

    Article  PubMed  CAS  Google Scholar 

  2. Adcock IM, Ito K. Steroid resistance in asthma: A major problem requiring novel solutions or a non-issue? Curr Opin Pharmacol. 2004;4(3):257–62.

    Article  PubMed  CAS  Google Scholar 

  3. Spector SL, Farr RS. The heterogeneity of asthmatic patients–an individualized approach to diagnosis and treatment. J Allergy Clin Immunol. 1976;57(5):499–511.

    Article  PubMed  CAS  Google Scholar 

  4. Holloway JW, Yang IA, Holgate ST. Genetics of allergic disease. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S81–94.

    Article  PubMed  Google Scholar 

  5. Wu T, et al. Genetic and environmental influences on objective intermediate asthma phenotypes in Dutch twins. Eur Respir J. 2010;36(2):261–8.

    Article  PubMed  CAS  Google Scholar 

  6. Thomsen SF, et al. Estimates of asthma heritability in a large twin sample. Clin Exp Allergy. 2010;40(7):1054–61.

    Article  PubMed  CAS  Google Scholar 

  7. Thomsen SF, et al. A study of asthma severity in adult twins. Clin Respir J. 2012;6(4):228–37.

    Article  PubMed  Google Scholar 

  8. • Portelli M, Sayers I. Genetic basis for personalized medicine in asthma. Expert Rev Respir Med. 2012;6(2):223–36. A clear and well written review describing how pharmacogenetics holds the promise of personalising treatment regimes for individuals with asthma. The rationale for testing genes that code for proteins involved in various different signalling pathways are also discussed.

    Article  PubMed  CAS  Google Scholar 

  9. Wadsworth S, Sin D, Dorscheid D. Clinical update on the use of biomarkers of airway inflammation in the management of asthma. J Asthma Allergy. 2011;4:77–86.

    Article  PubMed  Google Scholar 

  10. •• Wenzel S. Severe asthma: From characteristics to phenotypes to endotypes. Clin Exp Allergy. 2012;42(5):650–8. A very important paper discussing how characteristics of severe asthma can be combined to generate patient phenotypes, and how we need to take this further to find clinically relevant asthma endotypes.

    Article  PubMed  CAS  Google Scholar 

  11. Miranda C, et al. Distinguishing severe asthma phenotypes: Role of age at onset and eosinophilic inflammation. J Allergy Clin Immunol. 2004;113(1):101–8.

    Article  PubMed  Google Scholar 

  12. Moore WC, et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med. 2010;181(4):315–23.

    Article  PubMed  Google Scholar 

  13. Haldar P, et al. Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med. 2008;178(3):218–24.

    Article  PubMed  Google Scholar 

  14. Siroux V, et al. Identifying adult asthma phenotypes using a clustering approach. Eur Respir J. 2011;38(2):310–7.

    Article  PubMed  CAS  Google Scholar 

  15. Anderson GP. Endotyping asthma: New insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet. 2008;372(9643):1107–19.

    Article  PubMed  Google Scholar 

  16. Malmstrom K. Oral montelukast, inhaled beclomethasone, and placebo for chronic asthma. A randomized, controlled trial. Montelukast/Beclomethasone Study Group. Ann Intern Med. 1999;130(6):487–95.

    PubMed  CAS  Google Scholar 

  17. Sorkness CA, et al. Long-term comparison of 3 controller regimens for mild-moderate persistent childhood asthma: The pediatric asthma controller trial. J Allergy Clin Immunol. 2007;119(1):64–72.

    Article  PubMed  Google Scholar 

  18. Green RH, et al. Analysis of induced sputum in adults with asthma: Identification of subgroup with isolated sputum neutrophilia and poor response to inhaled corticosteroids. Thorax. 2002;57(10):875–9.

    Article  PubMed  CAS  Google Scholar 

  19. Laitinen A, et al. Tenascin is increased in airway basement membrane of asthmatics and decreased by an inhaled steroid. Am J Respir Crit Care Med. 1997;156(3 Pt 1):951–8.

    PubMed  CAS  Google Scholar 

  20. Hirst SJ. Airway smooth muscle as a target in asthma. Clin Exp Allergy. 2000;30 Suppl 1:54–9.

    Article  PubMed  Google Scholar 

  21. Holgate ST, et al. Epithelial-mesenchymal interactions in the pathogenesis of asthma. J Allergy Clin Immunol. 2000;105(2 Pt 1):193–204.

    Article  PubMed  CAS  Google Scholar 

  22. Hackett TL, Knight DA. The role of epithelial injury and repair in the origins of asthma. Curr Opin Allergy Clin Immunol. 2007;7(1):63–8.

    Article  PubMed  Google Scholar 

  23. Barnes PJ. The role of inflammation and anti-inflammatory medication in asthma. Respir Med. 2002;96(A):S9–15.

    PubMed  Google Scholar 

  24. Malmstrom K, et al. Lung function, airway remodelling and inflammation in symptomatic infants: Outcome at 3 years. Thorax. 2011;66(2):157–62.

    Article  PubMed  Google Scholar 

  25. Sont JK, et al. Relationship between the inflammatory infiltrate in bronchial biopsy specimens and clinical severity of asthma in patients treated with inhaled steroids. Thorax. 1996;51(5):496–502.

    Article  PubMed  CAS  Google Scholar 

  26. Goldstein, J., et al., FDA Clinical Review of BLA 98–0369 Herceptin Trastuzumab (rhuMAb HER2), in Clinical Review1998, Centre for Biologics Evaluation and Research: Food and Drug Administration.

  27. • Holgate ST. Pathophysiology of asthma: what has our current understanding taught us about new therapeutic approaches? J Allergy Clin Immunol. 2011;128(3):495–505. A comprehensive and up-to-date review on novel, targeted asthma therapies currently in development and clinical testing.

    Article  PubMed  CAS  Google Scholar 

  28. • Drazen JM. Asthma: The paradox of heterogeneity. J Allergy Clin Immunol. 2012;129(5):1200–1. A thought-provoking short editorial on how the clinical success of steroids has polarised opinion (and subsequently drug development) to consider inflammation as the primary defect in asthma, when in fact the airway epithelium may be the site of the primary lesion in the disease.

    Article  PubMed  Google Scholar 

  29. Garcia-Caballero T, et al. HER-2 status determination in breast carcinomas. A practical approach. Histol Histopathol. 2006;21(3):227–36.

    PubMed  CAS  Google Scholar 

  30. Singer CF, Kostler WJ, Hudelist G. Predicting the efficacy of trastuzumab-based therapy in breast cancer: Current standards and future strategies. Biochim Biophys Acta. 2008;1786(2):105–13.

    PubMed  CAS  Google Scholar 

  31. Drazen JM, Silverman EK, Lee TH. Heterogeneity of therapeutic responses in asthma. Br Med Bull. 2000;56(4):1054–70.

    Article  PubMed  CAS  Google Scholar 

  32. Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med. 2010;363(2):166–76.

    Article  PubMed  CAS  Google Scholar 

  33. Parola AL, Kobilka BK. The peptide product of a 5' leader cistron in the beta 2 adrenergic receptor mRNA inhibits receptor synthesis. J Biol Chem. 1994;269(6):4497–505.

    PubMed  CAS  Google Scholar 

  34. Reihsaus E, et al. Mutations in the gene encoding for the beta 2-adrenergic receptor in normal and asthmatic subjects. Am J Respir Cell Mol Biol. 1993;8(3):334–9.

    PubMed  CAS  Google Scholar 

  35. Green SA, et al. Amino-terminal polymorphisms of the human beta 2-adrenergic receptor impart distinct agonist-promoted regulatory properties. Biochemistry. 1994;33(32):9414–9.

    Article  PubMed  CAS  Google Scholar 

  36. Green SA, et al. Influence of beta 2-adrenergic receptor genotypes on signal transduction in human airway smooth muscle cells. Am J Respir Cell Mol Biol. 1995;13(1):25–33.

    PubMed  CAS  Google Scholar 

  37. Chong LK, et al. Influence of genetic polymorphisms in the beta2-adrenoceptor on desensitization in human lung mast cells. Pharmacogenetics. 2000;10(2):153–62.

    Article  PubMed  CAS  Google Scholar 

  38. Green SA, et al. A polymorphism of the human beta 2-adrenergic receptor within the fourth transmembrane domain alters ligand binding and functional properties of the receptor. J Biol Chem. 1993;268(31):23116–21.

    PubMed  CAS  Google Scholar 

  39. Rathz DA, et al. Hierarchy of polymorphic variation and desensitization permutations relative to beta 1- and beta 2-adrenergic receptor signaling. J Biol Chem. 2003;278(12):10784–9.

    Article  PubMed  CAS  Google Scholar 

  40. McGraw DW, et al. Polymorphisms of the 5' leader cistron of the human beta2-adrenergic receptor regulate receptor expression. J Clin Invest. 1998;102(11):1927–32.

    Article  PubMed  CAS  Google Scholar 

  41. Moore PE, et al. Polymorphism of the beta(2)-adrenergic receptor gene and desensitization in human airway smooth muscle. Am J Respir Crit Care Med. 2000;162(6):2117–24.

    PubMed  CAS  Google Scholar 

  42. Sayers I, et al. Pharmacogenetic characterization of indacaterol, a novel beta 2-adrenoceptor agonist. Br J Pharmacol. 2009;158(1):277–86.

    Article  PubMed  CAS  Google Scholar 

  43. Lima JJ, et al. Importance of beta(2)adrenergic receptor genotype, gender and race on albuterol-evoked bronchodilation in asthmatics. Pulm Pharmacol Ther. 2000;13(3):127–34.

    Article  PubMed  CAS  Google Scholar 

  44. Lima JJ, et al. Impact of genetic polymorphisms of the beta2-adrenergic receptor on albuterol bronchodilator pharmacodynamics. Clin Pharmacol Ther. 1999;65(5):519–25.

    Article  PubMed  CAS  Google Scholar 

  45. Kotani Y, et al. Beta2-adrenergic receptor polymorphisms affect airway responsiveness to salbutamol in asthmatics. J Asthma. 1999;36(7):583–90.

    Article  PubMed  CAS  Google Scholar 

  46. Martinez FD, et al. Association between genetic polymorphisms of the beta2-adrenoceptor and response to albuterol in children with and without a history of wheezing. J Clin Invest. 1997;100(12):3184–8.

    Article  PubMed  CAS  Google Scholar 

  47. Tan S, et al. Association between beta 2-adrenoceptor polymorphism and susceptibility to bronchodilator desensitisation in moderately severe stable asthmatics. Lancet. 1997;350(9083):995–9.

    Article  PubMed  CAS  Google Scholar 

  48. Lipworth BJ, et al. Effects of genetic polymorphism on ex vivo and in vivo function of beta2-adrenoceptors in asthmatic patients. Chest. 1999;115(2):324–8.

    Article  PubMed  CAS  Google Scholar 

  49. Lipworth BJ, Dempsey OJ, Aziz I. Functional antagonism with formoterol and salmeterol in asthmatic patients expressing the homozygous glycine-16 beta(2)-adrenoceptor polymorphism. Chest. 2000;118(2):321–8.

    Article  PubMed  CAS  Google Scholar 

  50. Bleecker ER, et al. Effect of ADRB2 polymorphisms on response to longacting beta2-agonist therapy: A pharmacogenetic analysis of two randomised studies. Lancet. 2007;370(9605):2118–25.

    Article  PubMed  CAS  Google Scholar 

  51. Wechsler ME, et al. Effect of beta2-adrenergic receptor polymorphism on response to longacting beta2 agonist in asthma (LARGE trial): A genotype-stratified, randomised, placebo-controlled, crossover trial. Lancet. 2009;374(9703):1754–64.

    Article  PubMed  CAS  Google Scholar 

  52. Schwartz HJ, Lowell FC, Melby JC. Steroid resistance in bronchial asthma. Ann Intern Med. 1968;69(3):493–9.

    PubMed  CAS  Google Scholar 

  53. Hurley DM, et al. Point mutation causing a single amino acid substitution in the hormone binding domain of the glucocorticoid receptor in familial glucocorticoid resistance. J Clin Invest. 1991;87(2):680–6.

    Article  PubMed  CAS  Google Scholar 

  54. Lane SJ, et al. Chemical mutational analysis of the human glucocorticoid receptor cDNA in glucocorticoid-resistant bronchial asthma. Am J Respir Cell Mol Biol. 1994;11(1):42–8.

    PubMed  CAS  Google Scholar 

  55. Tantisira KG, et al. Corticosteroid pharmacogenetics: Association of sequence variants in CRHR1 with improved lung function in asthmatics treated with inhaled corticosteroids. Hum Mol Genet. 2004;13(13):1353–9.

    Article  PubMed  CAS  Google Scholar 

  56. Tantisira KG, et al. TBX21: A functional variant predicts improvement in asthma with the use of inhaled corticosteroids. Proc Natl Acad Sci U S A. 2004;101(52):18099–104.

    Article  PubMed  CAS  Google Scholar 

  57. Ye YM, et al. Pharmacogenetic study of the effects of NK2R G231E G > A and TBX21 H33Q C > G polymorphisms on asthma control with inhaled corticosteroid treatment. J Clin Pharm Ther. 2009;34(6):693–701.

    Article  PubMed  CAS  Google Scholar 

  58. Hawkins GA, et al. The glucocorticoid receptor heterocomplex gene STIP1 is associated with improved lung function in asthmatic subjects treated with inhaled corticosteroids. J Allergy Clin Immunol. 2009;123(6):1376–83. e7.

    Article  PubMed  CAS  Google Scholar 

  59. Drazen JM, et al. Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nat Genet. 1999;22(2):168–70.

    Article  PubMed  CAS  Google Scholar 

  60. Lima JJ, et al. Influence of leukotriene pathway polymorphisms on response to montelukast in asthma. Am J Respir Crit Care Med. 2006;173(4):379–85.

    Article  PubMed  CAS  Google Scholar 

  61. Klotsman M, et al. Pharmacogenetics of the 5-lipoxygenase biosynthetic pathway and variable clinical response to montelukast. Pharmacogenet Genomics. 2007;17(3):189–96.

    Article  PubMed  CAS  Google Scholar 

  62. Tantisira KG, et al. 5-lipoxygenase pharmacogenetics in asthma: Overlap with Cys-leukotriene receptor antagonist loci. Pharmacogenet Genomics. 2009;19(3):244–7.

    Article  PubMed  CAS  Google Scholar 

  63. Sampson AP, et al. Variant LTC(4) synthase allele modifies cysteinyl leukotriene synthesis in eosinophils and predicts clinical response to zafirlukast. Thorax. 2000;55 Suppl 2:S28–31.

    Article  PubMed  Google Scholar 

  64. Whelan GJ, et al. Effect of montelukast on time-course of exhaled nitric oxide in asthma: Influence of LTC4 synthase A(−444)C polymorphism. Pediatr Pulmonol. 2003;36(5):413–20.

    Article  PubMed  Google Scholar 

  65. Currie GP, et al. Leukotriene C4 synthase polymorphisms and responsiveness to leukotriene antagonists in asthma. Br J Clin Pharmacol. 2003;56(4):422–6.

    Article  PubMed  CAS  Google Scholar 

  66. Lee SY, et al. Responsiveness to montelukast is associated with bronchial hyperresponsiveness and total immunoglobulin E but not polymorphisms in the leukotriene C4 synthase and cysteinyl leukotriene receptor 1 genes in Korean children with exercise-induced asthma (EIA). Clin Exp Allergy. 2007;37(10):1487–93.

    PubMed  CAS  Google Scholar 

  67. Moffatt MF, et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature. 2007;448(7152):470–3.

    Article  PubMed  CAS  Google Scholar 

  68. Torgerson DG, et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. Nat Genet. 2011;43(9):887–92.

    Article  PubMed  CAS  Google Scholar 

  69. Sleiman PM, et al. Variants of DENND1B associated with asthma in children. N Engl J Med. 2010;362(1):36–44.

    Article  PubMed  CAS  Google Scholar 

  70. Moffatt MF, et al. A large-scale, consortium-based genomewide association study of asthma. N Engl J Med. 2010;363(13):1211–21.

    Article  PubMed  CAS  Google Scholar 

  71. Gudbjartsson DF, et al. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat Genet. 2009;41(3):342–7.

    Article  PubMed  CAS  Google Scholar 

  72. Li X, et al. Genome-wide association study of asthma identifies RAD50-IL13 and HLA-DR/DQ regions. J Allergy Clin Immunol. 2010;125(2):328–35. e11.

    Article  PubMed  CAS  Google Scholar 

  73. Hirota T, et al. Genome-wide association study identifies three new susceptibility loci for adult asthma in the Japanese population. Nat Genet. 2011;43(9):893–6.

    Article  PubMed  CAS  Google Scholar 

  74. Tantisira KG, et al. Genomewide association between GLCCI1 and response to glucocorticoid therapy in asthma. N Engl J Med. 2011;365(13):1173–83.

    Article  PubMed  CAS  Google Scholar 

  75. Tantisira KG, et al. Genome-wide association identifies the T gene as a novel asthma pharmacogenetic locus. Am J Respir Crit Care Med. 2012;185(12):1286–91.

    Article  PubMed  CAS  Google Scholar 

  76. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther, 2001. 69(3): p. 89–95

    Google Scholar 

  77. Chang, C.L., et al., Biochemical markers of cardiac dysfunction predict mortality in acute exacerbations of COPD. Thorax, 2011.

  78. Reddel HK, et al. An official American Thoracic Society/European Respiratory Society statement: Asthma control and exacerbations: Standardizing endpoints for clinical asthma trials and clinical practice. Am J Respir Crit Care Med. 2009;180(1):59–99.

    Article  PubMed  Google Scholar 

  79. Watanabe T, et al. Increased levels of HMGB-1 and endogenous secretory RAGE in induced sputum from asthmatic patients. Respir Med. 2011;105(4):519–25.

    Article  PubMed  Google Scholar 

  80. D'Amico A, et al. An investigation on electronic nose diagnosis of lung cancer. Lung Cancer. 2010;68(2):170–6.

    Article  PubMed  Google Scholar 

  81. Payne DN, et al. Relationship between exhaled nitric oxide and mucosal eosinophilic inflammation in children with difficult asthma, after treatment with oral prednisolone. Am J Respir Crit Care Med. 2001;164(8 Pt 1):1376–81.

    PubMed  CAS  Google Scholar 

  82. Schleich FN, et al. Exhaled nitric oxide thresholds associated with a sputum eosinophil count >/=3 % in a cohort of unselected patients with asthma. Thorax. 2010;65(12):1039–44.

    Article  PubMed  Google Scholar 

  83. Jiang J, et al. Nitric oxide gas phase release in human small airway epithelial cells. Respir Res. 2009;10:3.

    Article  PubMed  CAS  Google Scholar 

  84. Taylor DR. Nitric oxide as a clinical guide for asthma management. J Allergy Clin Immunol. 2006;117(2):259–62.

    Article  PubMed  CAS  Google Scholar 

  85. Olin AC, et al. Height, age, and atopy are associated with fraction of exhaled nitric oxide in a large adult general population sample. Chest. 2006;130(5):1319–25.

    Article  PubMed  Google Scholar 

  86. Smith AD, et al. Exhaled nitric oxide: a predictor of steroid response. Am J Respir Crit Care Med. 2005;172(4):453–9.

    Article  PubMed  Google Scholar 

  87. Pijnenburg MW, et al. Exhaled nitric oxide predicts asthma relapse in children with clinical asthma remission. Thorax. 2005;60(3):215–8.

    Article  PubMed  CAS  Google Scholar 

  88. Kostikas K, et al. Exhaled NO and exhaled breath condensate pH in the evaluation of asthma control. Respir Med. 2011;105(4):526–32.

    Article  PubMed  Google Scholar 

  89. Petsky HL, et al. Tailored interventions based on exhaled nitric oxide versus clinical symptoms for asthma in children and adults. Cochrane Database Syst Rev. 2009;4:CD006340.

    PubMed  Google Scholar 

  90. Holz O, Magnussen H. Cutoff values for FENO-guided asthma management. Am J Respir Crit Care Med. 2009;180(3):281–2. author reply 282.

    PubMed  Google Scholar 

  91. Hervas D, Milan JM, Garde J. Differences in exhaled nitric oxide in atopic children. Allergol Immunopathol (Madr). 2008;36(6):331–5.

    Article  CAS  Google Scholar 

  92. Chan EY, Ng DK, Chan CH. Measuring FENO in asthma: Coexisting allergic rhinitis and severity of atopy as confounding factors. Am J Respir Crit Care Med. 2009;180(3):281. author reply 282.

    PubMed  Google Scholar 

  93. Banovcin P, et al. Factors attributable to the level of exhaled nitric oxide in asthmatic children. Eur J Med Res. 2009;14 Suppl 4:9–13.

    Article  PubMed  Google Scholar 

  94. Scott M, et al. Influence of atopy and asthma on exhaled nitric oxide in an unselected birth cohort study. Thorax. 2010;65(3):258–62.

    Article  PubMed  Google Scholar 

  95. Cordeiro D, et al. Utility of nitric oxide for the diagnosis of asthma in an allergy clinic population. Allergy Asthma Proc. 2011;32(2):119–26.

    Article  PubMed  CAS  Google Scholar 

  96. Rouhos A, et al. Atopic sensitization to common allergens without symptoms or signs of airway disorders does not increase exhaled nitric oxide. Clin Respir J. 2008;2(3):141–8.

    Article  PubMed  Google Scholar 

  97. Popov TA, et al. Evaluation of a simple, potentially individual device for exhaled breath temperature measurement. Respir Med. 2007;101(10):2044–50.

    Article  PubMed  Google Scholar 

  98. Paredi P, Kharitonov SA, Barnes PJ. Faster rise of exhaled breath temperature in asthma: A novel marker of airway inflammation? Am J Respir Crit Care Med. 2002;165(2):181–4.

    PubMed  Google Scholar 

  99. Paredi P, Kharitonov SA, Barnes PJ. Exhaled breath temperature in asthma. Eur Respir J. 2003;21(1):195. author reply 196.

    Article  PubMed  CAS  Google Scholar 

  100. Paredi P, Kharitonov SA, Barnes PJ. Correlation of exhaled breath temperature with bronchial blood flow in asthma. Respir Res. 2005;6:15.

    Article  PubMed  Google Scholar 

  101. Hoffmeyer F, Raulf-Heimsoth M, Bruning T. Exhaled breath condensate and airway inflammation. Curr Opin Allergy Clin Immunol. 2009;9(1):16–22.

    Article  PubMed  Google Scholar 

  102. Gessner C, et al. Angiogenic markers in breath condensate identify non-small cell lung cancer. Lung Cancer. 2010;68(2):177–84.

    Article  PubMed  CAS  Google Scholar 

  103. Bloemen K, et al. A new approach to study exhaled proteins as potential biomarkers for asthma. Clin Exp Allergy. 2011;41(3):346–56.

    Article  PubMed  CAS  Google Scholar 

  104. Lessard A, et al. Obesity and asthma: A specific phenotype? Chest. 2008;134(2):317–23.

    Article  PubMed  Google Scholar 

  105. Lowhagen O, et al. The inflammatory marker serum eosinophil cationic protein (ECP) compared with PEF as a tool to decide inhaled corticosteroid dose in asthmatic patients. Respir Med. 2002;96(2):95–101.

    Article  PubMed  CAS  Google Scholar 

  106. Dosanjh A, et al. Elevated serum eosinophil cationic protein levels in cystic fibrosis, pediatric asthma, and bronchiolitis. Pediatric Asthma, Allergy & Immunology. 1996;10(4):169–73.

    Article  Google Scholar 

  107. Lessard A, et al. Leptin and adiponectin in obese and non-obese subjects with asthma. Biomarkers. 2011;16(3):271–3.

    Article  PubMed  CAS  Google Scholar 

  108. Berg CM, et al. Decreased Fraction of exhaled nitric oxide in obese subjects with asthma symptoms: Data from the population study INTERGENE/ADONIX. Chest. 2011;139(5):1109–16.

    Article  PubMed  Google Scholar 

  109. Kim SH, et al. Adiposity, adipokines, and exhaled nitric oxide in healthy adults without asthma. J Asthma. 2011;48(2):177–82.

    Article  PubMed  CAS  Google Scholar 

  110. Sekiya T, et al. Increased levels of a TH2-type CC chemokine thymus and activation-regulated chemokine (TARC) in serum and induced sputum of asthmatics. Allergy. 2002;57(2):173–7.

    Article  PubMed  CAS  Google Scholar 

  111. Leung TF, et al. Plasma concentration of thymus and activation-regulated chemokine is elevated in childhood asthma. J Allergy Clin Immunol. 2002;110(3):404–9.

    Article  PubMed  CAS  Google Scholar 

  112. Chupp GL, et al. A chitinase-like protein in the lung and circulation of patients with severe asthma. N Engl J Med. 2007;357(20):2016–27.

    Article  PubMed  CAS  Google Scholar 

  113. Hartl D, et al. Novel biomarkers in asthma: chemokines and chitinase-like proteins. Curr Opin Allergy Clin Immunol. 2009;9(1):60–6.

    Article  PubMed  CAS  Google Scholar 

  114. Stephan V, et al. Determination of N-methylhistamine in urine as an indicator of histamine release in immediate allergic reactions. J Allergy Clin Immunol. 1990;86(6 Pt 1):862–8.

    Article  PubMed  CAS  Google Scholar 

  115. Takei S, et al. Urinary N-methylhistamine in asthmatic children receiving azelastine hydrochloride. Ann Allergy Asthma Immunol. 1997;78(5):492–6.

    Article  PubMed  CAS  Google Scholar 

  116. Saude EJ, et al. Metabolomic profiling of asthma: diagnostic utility of urine nuclear magnetic resonance spectroscopy. J Allergy Clin Immunol. 2011;127(3):757–64. e1-6.

    Article  PubMed  CAS  Google Scholar 

  117. DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: New estimates of drug development costs. J Health Econ. 2003;22(2):151–85.

    Article  PubMed  Google Scholar 

  118. MATES, M.A.T.E.S.I.W.G., Advancing Tissue Science and Engineering - A Foundation for the Future - A Multi-Agency Strategic Plan, N.S.a.T. Council, Editor 2007, US government. p. 1–40.

  119. Paquette JS, et al. Tissue-engineered human asthmatic bronchial equivalents. Eur Cell Mater. 2004;7:1–11. discussion 1–11.

    PubMed  Google Scholar 

  120. Hackett TL, et al. Intrinsic phenotypic differences of asthmatic epithelium and its inflammatory responses to respiratory syncytial virus and air pollution. Am J Respir Cell Mol Biol. 2011;45(5):1090–100.

    Article  PubMed  CAS  Google Scholar 

  121. Kicic A, et al. Intrinsic biochemical and functional differences in bronchial epithelial cells of children with asthma. Am J Respir Crit Care Med. 2006;174(10):1110–8.

    Article  PubMed  CAS  Google Scholar 

  122. Kicic A, et al. Decreased fibronectin production significantly contributes to dysregulated repair of asthmatic epithelium. Am J Respir Crit Care Med. 2010;181(9):889–98.

    Article  PubMed  CAS  Google Scholar 

  123. Grubb BR, Schiretz FR, Boucher RC. Volume transport across tracheal and bronchial airway epithelia in a tubular culture system. Am J Physiol. 1997;273(1 Pt 1):C21–9.

    PubMed  CAS  Google Scholar 

  124. Miller C, George S, Niklason L. Developing a tissue-engineered model of the human bronchiole. J Tissue Eng Regen Med. 2010;4(8):619–27.

    Article  PubMed  CAS  Google Scholar 

  125. Siergiejko Z, et al. Oral corticosteroid sparing with omalizumab in severe allergic (IgE-mediated) asthma patients. Curr Med Res Opin. 2011;27(11):2223–8.

    Article  PubMed  CAS  Google Scholar 

  126. Lanier B, et al. Omalizumab for the treatment of exacerbations in children with inadequately controlled allergic (IgE-mediated) asthma. J Allergy Clin Immunol. 2009;124(6):1210–6.

    Article  PubMed  CAS  Google Scholar 

  127. Gauvreau GM, et al. Effects of interleukin-13 blockade on allergen-induced airway responses in mild atopic asthma. Am J Respir Crit Care Med. 2011;183(8):1007–14.

    Article  PubMed  CAS  Google Scholar 

  128. Wenzel S, et al. Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: Results of two phase 2a studies. Lancet. 2007;370(9596):1422–31.

    Article  PubMed  CAS  Google Scholar 

  129. Flood-Page P, et al. Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J Clin Invest. 2003;112(7):1029–36.

    PubMed  CAS  Google Scholar 

  130. Nair P, et al. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N Engl J Med. 2009;360(10):985–93.

    Article  PubMed  CAS  Google Scholar 

  131. Holgate ST, et al. Efficacy and safety of etanercept in moderate-to-severe asthma: A randomised, controlled trial. Eur Respir J. 2011;37(6):1352–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel J. Wadsworth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wadsworth, S.J., Sandford, A.J. Personalised Medicine and Asthma Diagnostics/Management. Curr Allergy Asthma Rep 13, 118–129 (2013). https://doi.org/10.1007/s11882-012-0325-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-012-0325-9

Keywords

Navigation