Skip to main content

New Agents for Treating Dry Eye Syndrome


Dry eye syndrome (DES) is characterized by an inadequate volume and/or quality of tears resulting in chronic ocular surface irritation and inflammation. Affecting up to 30 % of adults, DES has a considerable impact on visual function and quality of life. DES may complicate allergic ocular disease and allergy medication may exacerbate DES. The pathophysiology of DES involves osmotic, mechanical and inflammatory insults to the tear film, epithelium and subepithelial nerve plexus. Various immune-related molecular targets have been the focus of research aimed at developing new therapeutic agents for treating DES. This article provides an overview of established, new and future agents for treating DES.

This is a preview of subscription content, access via your institution.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Basic and Clinical Science Course. Section 8. External disease and cornea, American Academy of Ophthalmology, 2008.

  2. 2.

    The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf. 2007;5(2):75–92.

  3. 3.

    • Yavuz B, Bozdağ Pehlivan S, Unlü N. An overview on dry eye treatment: approaches for cyclosporin a delivery. ScientificWorldJournal. 2012;2012:194848. A concise overview of the pharmacokinetics of topical cyclosporine and new drug delivery systems.

  4. 4.

    The epidemiology of dry eye disease: report of the Epidemiology Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf. 2007;5(2):93-107.

  5. 5.

    Schaumberg DA, Sullivan DA, Buring JE, Dana MR. Prevalence of dry eye syndrome among US women. Am J Ophthalmol. 2003;136(2):318–26.

    PubMed  Article  Google Scholar 

  6. 6.

    Moss SE, Klein R, Klein BE. Prevalence of and risk factors for dry eye syndrome. Arch Ophthalmol. 2000;118(9):1264–68.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Brewitt H, Sistani F. Dry eye disease: the scale of the problem. Surv Ophthalmol. 2001;45 Suppl 2:S199–202.

    PubMed  Article  Google Scholar 

  8. 8.

    Ding J, Sullivan DA. Aging and dry eye disease. Exp Gerontol. 2012;47(7):483–90.

    PubMed  Article  Google Scholar 

  9. 9.

    Guillon M, Maissa C. Contact lens wear affects tear film evaporation. Eye Contact Lens. 2008;34(6):326–30.

    PubMed  Article  Google Scholar 

  10. 10.

    Yee RW, Sperling HG, Kattek A, Paukert MT, Dawson K, Garcia M, Hilsenbeck S. Isolation of the ocular surface to treat dysfunctional tear syndrome associated with computer use. Ocul Surf. 2007;5(4):308–15.

    PubMed  Article  Google Scholar 

  11. 11.

    Pflugfelder SC. Prevalence, burden, and pharmacoeconomics of dry eye disease. Am J Manag Care. 2008;14(3 Suppl):S102–6.

    PubMed  Google Scholar 

  12. 12.

    Lemp MA. Report of the National Eye Institute/Industry workshop on Clinical Trials in Dry Eyes. The CLAO Journal. 1995;21(4):221–32.

    PubMed  CAS  Google Scholar 

  13. 13.

    • Pult H, Purslow C, Murphy PJ. The relationship between clinical signs and dry eye symptoms. Eye (Lond). 2011;25(4):502–10. A 47-patient cohort study comparing clinical symptoms of dry eye with new and traditional clinical tests. When used in combination, these tests correlate with symptomatic severity of dry eye syndrome.

  14. 14.

    Li M, Gong L, Sun X, Chapin WJ. Anxiety and depression in patients with dry eye syndrome. Curr Eye Res. 2011;36(1):1–7.

    PubMed  Article  Google Scholar 

  15. 15.

    Miljanović B, Dana R, Sullivan DA, Schaumberg DA. Impact of dry eye syndrome on vision-related quality of life. Am J Ophthalmol. 2007;143(3):409–15.

    PubMed  Article  Google Scholar 

  16. 16.

    McGinnigle S, Naroo SA, Eperjesi F. Evaluation of dry eye. Surv Ophthalmol. 2012;57(4):293–316.

    PubMed  Article  Google Scholar 

  17. 17.

    Luo L, Li DQ, Corrales RM, Pflugfelder SC. Hyperosmolar saline is a proinflammatory stress on the mouse ocular surface. Eye Contact Lens. 2005;31(5):186–93.

    PubMed  Article  Google Scholar 

  18. 18.

    De Paiva CS, Pangelinan SB, Chang E, et al. Essential role for c-Jun N-terminal kinase 2 in corneal epithelial response to desiccating stress. Arch Ophthalmol. 2009;127(12):1625–31.

    PubMed  Article  Google Scholar 

  19. 19.

    Li DQ, Luo L, Chen Z, Kim HS, Song XJ, Pflugfelder SC. JNK and ERK MAP kinases mediate induction of IL-1β, TNF-α and IL-8 following hyperosmolar stress in human limbal epithelial cells. Exp Eye Res. 2006;82(4):588–96.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    •• Stevenson W, Chauhan SK, Dana R. Dry eye disease: an immune-mediated ocular surface disorder. Arch Ophthalmol. 2012;130(1):90-100. An excellent overview of the immunopathogenesis of dry eye and the associated molecular targets for anti-inflammatory treatment of dry eye syndrome.

  21. 21.

    El Annan J, Chauhan SK, Ecoiffier T, Zhang Q, Saban DR, Dana R. Characterization of effector T cells in dry eye disease. Invest Ophthalmol Vis Sci. 2009;50(8):3802-3807.

    Google Scholar 

  22. 22.

    De Paiva CS, Chotikavanich S, Pangelinan SB, et al. IL-17 disrupts corneal barrier following desiccating stress. Mucosal Immunol. 2009;2(3):243–53.

    PubMed  Article  Google Scholar 

  23. 23.

    Chen YT, Nikulina K, Lazarev S, et al. Interleukin-1 as a phenotypic immunomodulator in keratinizing squamous metaplasia of the ocular surface in Sjogren’s syndrome. Am J Pathol. 2010;177(3):1333–43.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    De Paiva CS, Villarreal AL, Corrales RM, et al. Dry eye–induced conjunctival epithelial sqγuamous metaplasia is modulated by interferon-γ. Invest Ophthalmol Vis Sci. 2007;48(6):2553–60.

    PubMed  Article  Google Scholar 

  25. 25.

    Yeh S, Song XJ, Farley W, Li DQ, Stern ME, Pflugfelder SC. Apoptosis of ocular surface cells in experimentally induced dry eye. Invest Ophthalmol Vis Sci. 2003;44(1):124–9.

    PubMed  Article  Google Scholar 

  26. 26.

    Benıtez-Del-Castillo JM, Acosta MC, Wassfi MA, et al. Relation between corneal innervation with confocal microscopy and corneal sensitivity with noncontact esthesiometry in patients with dry eye. Invest Ophthalmol Vis Sci. 2007;48(1):173–81.

    PubMed  Article  Google Scholar 

  27. 27.

    Hosal BM, Ornek N, Zilelioğlu G, Elhan AH. Morphology of corneal nerves and corneal sensation in dry eye: a preliminary study. Eye (Lond). 2005;19(12):1276–9.

    Article  CAS  Google Scholar 

  28. 28.

    Yoon KC, Jeong IY, Park YG, Yang SY. Interleukin-6 and tumor necrosis factor-α levels in tears of patients with dry eye syndrome. Cornea. 2007;26(4):431–7.

    PubMed  Article  Google Scholar 

  29. 29.

    • Enrıquez-de-Salamanca A, Castellanos E, Stern ME, et al. Tear cytokine and chemokine analysis and clinical correlations in evaporative-type dry eye disease. Mol Vis. 2010;16:862–73. An evaluation of cytokines and other inflammatory molecules in the tear films of patients with mild-to-moderate dry eye syndrome compared to healthy subjects. Interleukin (IL) 1-receptor antagonist, IL-6, IL-8/CXCL-8 and epidermal growth factor levels correlated with symptoms and signs of dry eye syndrome.

  30. 30.

    Chotikavanich S, de Paiva CS, Li Q, et al. Production and activity of matrix metalloproteinase-9 on the ocular surface increase in dysfunctional tear syndrome. Invest Ophthalmol Vis Sci. 2009;50(7):3203–9.

    PubMed  Article  Google Scholar 

  31. 31.

    Brignole F, Pisella PJ, Goldschild M, De Saint Jean M, Goguel A, Baudouin C. Flow cytometric analysis of inflammatory markers in conjunctival epithelial cells of patients with dry eyes. Invest Ophthalmol Vis Sci. 2000;41(6):1356–63.

    PubMed  CAS  Google Scholar 

  32. 32.

    Gao J, Morgan G, Tieu D, et al. ICAM-1 expression predisposes ocular tissues to immune-based inflammation in dry eye patients and Sjogrens syndrome-like MRL/lpr mice. Exp Eye Res. 2004;78(4):823–35.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Zheng X, de Paiva CS, Li DQ, Farley WJ, Pflugfelder SC. Desiccating stress promotion of Th17 differentiation by ocular surface tissues through a dendritic cell mediated pathway. Invest Ophthalmol Vis Sci. 2010;51(6):3083–91.

    PubMed  Article  Google Scholar 

  34. 34.

    Chauhan SK, Dana R. Role of Th17 cells in the immunopathogenesis of dry eye disease. Mucosal Immunol. 2009;2(4):375–6.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Lee JH, Ahn HS, Kim EK, Kim TI. Efficacy of sodium hyaluronate and carboxymethylcellulose in treating mild to moderate dry eye disease. Cornea. 2011;30(2):175–9.

    PubMed  Article  Google Scholar 

  36. 36.

    McDonald CC, Kaye SB, Figueiredo FC, Macintosh G, Lockett C. A randomised, crossover, multicentre study to compare the performance of 0.1 % (w/v) sodium hyaluronate with 1.4 % (w/v) polyvinyl alcohol in the alleviation of symptoms associated with dry eye syndrome. Eye (Lond). 2002;16(5):601–7.

    Article  CAS  Google Scholar 

  37. 37.

    Brignole F, Pisella PJ, Dupas B, et al. Efficacy and safety of 0.18 % sodium hyaluronate in patients with moderate dry eye syndrome and superficial keratitis. Graefes Arch Clin Exp Ophthalmol. 2005;243(6):531–8.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Lemp MA. Management of dry eye. Am J Managed Care. 2008;14:S088–101.

    Google Scholar 

  39. 39.

    Scaffidi RC, Korb DR. Comparison of the efficacy of two lipid emulsion eyedrops in increasing tear film lipid layer thickness. Eye Contact Lens. 2007;33(1):38–44.

    PubMed  Article  Google Scholar 

  40. 40.

    Benelli U. Systane lubricant eye drops in the management of ocular dryness. Clin Ophthalmol. 2011;5:783–90.

    PubMed  Article  Google Scholar 

  41. 41.

    Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 2011;335(1):2–13.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    De Paiva CS, Corrales RM, Villarreal AL, et al. Apical corneal barrier disruption in experimental murine dry eye is abrogated by methylprednisolone and doxycycline. Invest Ophthalmol Vis Sci. 2006;47(7):2847–56.

    PubMed  Article  Google Scholar 

  43. 43.

    Lekhanont K, Leyngold IM, Suwan-Apichon O, Rangsin R, Chuck RS. Comparison of topical dry eye medications for the treatment of keratoconjunctivitis sicca in a botulinum toxin B–induced mouse model. Cornea. 2007;26(1):84–9.

    PubMed  Article  Google Scholar 

  44. 44.

    Avunduk AM, Avunduk MC, Varnell ED, Kaufman HE. The comparison of efficacies of topical corticosteroids and nonsteroidal anti-inflammatory drops on dry eye patients: a clinical and immunocytochemical study. Am J Ophthalmol. 2003;136(4):593–602.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Pflugfelder SC, Maskin SL, Anderson B, et al. A randomized, double-masked, placebo controlled, multicenter comparison of loteprednol etabonate ophthalmic suspension, 0.5 %, and placebo for treatment of keratoconjunctivitis sicca in patients with delayed tear clearance. Am J Ophthalmol. 2004;138(3):444–57.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Pavesio CE, Decory HH. Treatment of ocular inflammatory conditions with loteprednol etabonate. Br J Ophthalmol. 2008;92:455–9.

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    • Zhu L, Zhang C, Chuck RS. Topical steroid and non-steroidal anti-inflammatory drugs inhibit inflammatory cytokine expression on the ocular surface in the botulium toxin B-induced murine dry eye model. Mol Vis. 2012;18:1803–12. Botulin toxin B-induced mouse tear-deficiency dry eye model has been shown to mimic human non-Sjogren’s disease. In this study, topical fluoromethalone and not NSAIDs reduced staining of tumor necrosis factor α and IL-1β in corneal and conjunctival epithelia.

  48. 48.

    Congdon N, Schein O, Kulajta P, Lubomski L, Gilbert D, Katz J. Corneal complications associated with topical ophthalmic use of nonsteroidal anti-inflammatory drugs. J Cataract Refract Surg. 2001;27:622–31.

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    De Paiva CS, Corrales RM, Villarreal AL, Farley WJ, Li DQ, Stern ME, Pflugfelder SC. Corticosteroid and doxycycline suppress MMP-9 and inflammatory cytokine expression, MAPK activation in the corneal epithelium in experimental dry eye. Exp Eye Res. 2006;83:526–35.

    PubMed  Article  Google Scholar 

  50. 50.

    Luo L, Li DQ, Doshi A, Farley W, Corrales RM, Pflugfelder SC. Experimental dry eye stimulates production of inflammatory cytokines and MMP-9 and activates MAPK signaling pathways on the ocular surface. Invest Ophthalmol Vis Sci. 2004;45:4293–301.

    PubMed  Article  Google Scholar 

  51. 51.

    Nikodemova M, Watters JJ, Jackson SJ, Yang SK, Duncan ID. Minocycline down-regulates MHC II expression in microglia and macrophages through inhibition of IRF-1 and protein kinase C (PKC) alpha/betaII. J Biol Chem. 2007;282(20):15208–16.

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Shafaa MW, El Shazly LH, El Shazly AH, El Gohary AA, El Hossary GG. Efficacy of topically applied liposome-bound tetracycline in the treatment of dry eye model. Vet Ophthalmol. 2011;14(1):18–25.

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Veldman P, Colby K. Current evidence for topical azithromycin 1 % ophthalmic solution in the treatment of blepharitis and blepharitis-associated ocular dryness. Int Ophthalmol Clin. 2011;51(4):43–52.

    PubMed  Article  Google Scholar 

  54. 54.

    Nichols JJ, Bickle KM, Zink RC, Schiewe MD, Haque RM, Nichols KK. Safety and efficacy of topical azithromycin ophthalmic solution 1.0 % in the treatment of contact lens-related dry eye. Eye Contact Lens. 2012;38(2):73–9.

    PubMed  Article  Google Scholar 

  55. 55.

    Tauber J, Davitt WF, Bokosky JE, et al. Double-masked, placebo controlled safety and efficacy trial of diquafosol tetrasodium (INS365) ophthalmic solution for the treatment of dry eye. Cornea. 2004;23:784–92.

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    • Matsumoto Y, Ohashi Y, Watanabe H, Tsubota K. Diquafosol Ophthalmic Solution Phase 2 Study Group. Efficacy and safety of diquafosol ophthalmic solution in patients with dry eye syndrome: a Japanese Phase 2 Clinical Trial. Ophthalmology 2012;119(10):1954-60. A randomized, double-masked, multicenter clinical trial comparing topical diquafosol (1 %, n = 96, 3 %, n = 96) to placebo (n = 94). There was a dose-dependent improvement in fluorescein staining and an improvement in symptom score in both treatment groups.

  57. 57.

    Frist-Larsen K, Isager H, Manthorpe R. Sjogren’s syndrome treated with bromhexine: a randomized clinical study. Br Med J. 1978;1:1579–81.

    Article  Google Scholar 

  58. 58.

    Peral A, Domínguez-Godínez CO, Carracedo G, Pintor J. Therapeutic targets in dry eye syndrome. Drug News Perspect. 2008;21(3):166–76.

    PubMed  CAS  Google Scholar 

  59. 59.

    Avni I, Garzozi HJ, Barequet IS, et al. Treatment of dry eye syndrome with orally administered CF101: data from a phase 2 clinical trial. Ophthalmology. 2010;117(7):1287–93.

    PubMed  Article  Google Scholar 

  60. 60.

    Geerling G, Maclennan S, Hartwig D. Autologous serum eye drops for ocular surface disorders. Br J Ophthalmol. 2004;88:1467–74.

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Kojima T, Higuchi A, Goto E, Matsumoto Y, Dogru M, Tsubota K. Autologous serum eye drops for the treatment of dry eye diseases. Cornea. 2008;27 Suppl 1:S25–30.

    PubMed  Article  Google Scholar 

  62. 62.

    Bradley JC, Simoni J, Bradley RH, McCartney DL, Brown SM. Time- and temperature-dependent stability of growth factor peptides in human autologous serum eye drops. Cornea. 2009;28(2):200–5.

    PubMed  Article  Google Scholar 

  63. 63.

    Kojima T, Ishida R, Dogru M, et al. The effect of autologous serum eye drops in the treatment of severe dry eye disease: a prospective randomized case-control study. Am J Ophthalmol. 2005;139:242–6.

    PubMed  Article  Google Scholar 

  64. 64.

    Urzua CA, Vasquez DH, Huidobro A, Hernandez H, Alfaro J. Randomized double-blind clinical trial of autologous serum versus artificial tears in dry eye syndrome. Curr Eye Res. 2012;37(8):684–8.

    PubMed  Article  CAS  Google Scholar 

  65. 65.

    Donnenfeld E, Pflugfelder SC. Topical ophthalmic cyclosporine: pharmacology and clinical uses. Surv Ophthalmol. 2009;54(3):321–38.

    PubMed  Article  Google Scholar 

  66. 66.

    Eckstein LA, Van Quill KR, Bui SK, et al. Cyclosporin a inhibits calcineurin/nuclear factor of activated T-cells signaling and induces apoptosis in retinoblastoma cells. Invest Ophthalmol Vis Sci. 2005;46:782–90.

    PubMed  Article  Google Scholar 

  67. 67.

    Waldmeier PC, Zimmermann K, Qian T, et al. Cyclophilin D as a drug target. Curr Med Chem. 2003;10:1485–506.

    PubMed  Article  CAS  Google Scholar 

  68. 68.

    Brignole F, Pisella PJ, De Saint Jean M, et al. Flow cytometric analysis of inflammatory markers in KCS: 6- month treatment with topical cyclosporin A. Invest Ophthalmol Vis Sci. 2001;42:90–5.

    PubMed  CAS  Google Scholar 

  69. 69.

    Brignole F, Pisella PJ, Goldschild M, et al. Flow cytometric analysis of inflammatory markers in conjunctival epithelial cells of patients with dry eyes. Invest Ophthalmol Vis Sci. 2000;41:1356–63.

    PubMed  CAS  Google Scholar 

  70. 70.

    Kunert KS, Tisdale AS, Gipson IK. Goblet cell numbers and epithelial proliferation in the conjunctiva of patients with dry eye syndrome treated with cyclosporine. Arch Ophthalmol. 2002;120:330–7.

    PubMed  Article  CAS  Google Scholar 

  71. 71.

    Yoshida A, Fujihara T, Nakata K. Cyclosporin A increases tear fluid secretion via release of sensory neurotransmitters and muscarinic pathway in mice. Exp Eye Res. 1999;68(5):541–6.

    PubMed  Article  CAS  Google Scholar 

  72. 72.

    Sall K, Stevenson OD, Mundorf TK, et al. CsA Phase 3 Study Group. Two multicenter, randomized studies of the efficacy and safety of cyclosporine ophthalmic emulsion in moderate to severe dry eye disease. Ophthalmology. 2000;107:631–9.

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Stevenson D, Tauber J, Reis BL. Efficacy and safety of cyclosporin A ophthalmic emulsion in the treatment of moderate-to-severe dry eye disease: a dose-ranging, randomized trial. The Cyclosporin A Phase 2 Study Group. Ophthalmology. 2000;107(5):967–74.

    Google Scholar 

  74. 74.

    El Tayar N, Mark AE, Vallat P, et al. Solvent-dependent conformation and hydrogen-bonding capacity of cyclosporin A: evidence from partition coefficients and molecular dynamics simulations. J Med Chem. 1993;36(24):3757–64.

    PubMed  Article  CAS  Google Scholar 

  75. 75.

    Liu H, Wang Y, Li S. Advanced delivery of ciclosporin A: present state and perspective. Expert Opin Drug Deliv. 2007;4(4):349–58.

    PubMed  Article  CAS  Google Scholar 

  76. 76.

    Skalicky SE, Goldberg I, McCluskey P. Ocular surface disease and quality of life in glaucoma patients. Am J Ophthalmol. 2012;153(1):1–9.

    PubMed  Google Scholar 

  77. 77.

    Kanai A, Alba RM, Takano T, et al. The effect on the cornea of alpha cyclodextrin vehicle for cyclosporin eye drops. Transplant Proc. 1989;21(1):3150–52. part 3.

    PubMed  CAS  Google Scholar 

  78. 78.

    Schechter BA. Ketorolac during the induction phase of cyclosporin-A therapy. J Ocul Pharmacol Ther. 2006;22(2):150–4.

    PubMed  Article  CAS  Google Scholar 

  79. 79.

    Milani JK, Pleyer U, Dukes A, et al. Prolongation of corneal allograft survival with liposome-encapsulated cyclosporine in the rat eye. Ophthalmology. 1993;100(6):890–6.

    PubMed  CAS  Google Scholar 

  80. 80.

    Dillen K, Bozdag S, Vandervoort J, Ludwig A. Evaluation of the physicochemical characteristics and activity of various kinds of ciprofloxacin HCl-loaded cationic nanoparticles. J Drug Del Sci Tech. 2007;17(1):49–56.

    CAS  Google Scholar 

  81. 81.

    Sárdy M, Ruzicka T, Kuhn A. Topical calcineurin inhibitors in cutaneous lupus erythematosus. Arch Dermatol Res. 2009;301(1):93–8.

    PubMed  Article  Google Scholar 

  82. 82.

    Russell JJ. Topical tacrolimus: a new therapy for atopic dermatitis. Am Fam Physician. 2002;66(10):1899–903.

    PubMed  Google Scholar 

  83. 83.

    Moscovici BK, Holzchuh R, Chiacchio BB, Santo RM, Shimazaki J, Hida RY. Clinical treatment of dry eye using 0.03 % tacrolimus eye drops. Cornea. 2012;31(8):945–9.

    PubMed  Article  Google Scholar 

  84. 84.

    Products and technologies. Lux BioSciences. 2011. Available at: Accessed July 2012.

  85. 85.

    Ormerod AD. Topical tacrolimus and pimecrolimus and the risk of cancer: How much cause for concern? Br J Dermatol. 2005;153:701–5.

    PubMed  Article  CAS  Google Scholar 

  86. 86.

    Aragona P, Bucolo C, Spinella R, Giuffrida S, Ferreri G. Systemic omega-6 essential fatty acid treatment and pge1 tear content in Sjogren’s syndrome patients. Invest Ophthalmol Vis Sci. 2005;46(12):4474–9.

    PubMed  Article  Google Scholar 

  87. 87.

    • Rosenberg ES, Asbell PA. Essential fatty acids in the treatment of dry eye. Ocul Surf. 2010;8(1):18–28. A well-written review of the literature regarding essential fatty acids for the prevention or treatment of dry eye syndrome. All the studies demonstrated that essential fatty acid supplementation resulted in some improvement in dry eye syndrome yet the evidence is not strong.

  88. 88.

    Barabino S, Rolando M, Camicione P, et al. Systemic linoleic and gamma-linolenic acid therapy in dry eye syndrome with an inflammatory component. Cornea. 2003;22:97–101.

    PubMed  Article  Google Scholar 

  89. 89.

    Rashid S, Jin Y, Ecoiffier T, Barabino S, Schaumberg D, Dana R. Topical omega-3 and omega-6 fatty acids for treatment of dry eye. Arch Ophthalmol. 2008;126:219–25.

    PubMed  Article  CAS  Google Scholar 

  90. 90.

    James MJ, Gibson RA, Cleland LG. Dietary polyunsaturated fatty acids and inflammatory mediator production. Am J Clin Nutr. 2000;71 Suppl 1:343S–8S.

    PubMed  CAS  Google Scholar 

  91. 91.

    Li N, He J, Schwartz CE, Gjorstrup P, Bazan HE. Resolvin E1 improves tear production and decreases inflammation in a dry eye mouse model. J Ocul Pharmacol Ther. 2010;26(5):431–9.

    PubMed  Article  Google Scholar 

  92. 92.

    US National Institutes of Health Clinical Trials. 2011. Available at: Accessed July, 2012.

  93. 93.

    Takeji Y, Urashima H, Aoki A, Shinohara H. Rebamipide increases the mucin-like glycoprotein production in corneal epithelial cells. J Ocul Pharmacol Ther. 2012;28(3):259–63.

    PubMed  Article  CAS  Google Scholar 

  94. 94.

    • Fahmy AM, Hardten DR. Treating ocular surface disease: new agents in development. Clin Ophthalmol. 2011;5:465–472. A review of new agents in the treatment of ocular surface disease.

  95. 95.

    Coombs JH, Bloom BJ, Breedveld FC, et al. Improved pain, physical functioning and health status in patients with rheumatoid arthritis treated with CP-690,550, an orally active Janus kinase (JAK) inhibitor: results from a randomised, double-blind, placebo-controlled trial. Ann Rheum Dis. 2010;69:413–6.

    PubMed  Article  CAS  Google Scholar 

  96. 96.

    Schindler C, Levy DE, Decker T. JAK-STAT signaling: from interferons to cytokines. J Biol Chem. 2007;282(28):20059–63.

    PubMed  Article  CAS  Google Scholar 

  97. 97.

    • Ding C, Nandoskar P, Lu M, Thomas P, Trousdale MD, Wang Y. Changes of aquaporins in the lacrimal glands of a rabbit model of Sjögren's syndrome. Curr Eye Res. 2011;36(6):571–8. Protein and mRNA levels of aquaporin-4 and -5 were assessed in the lacrimal glands of rabbits with induced autoimmune dacryoadenitis compared to age-matched controls. Levels were altered in the diseased lacrimal glands, being greater or less than normal depending on the site (ductal or acinar cells) and aquaporin type (-4 or -5).

  98. 98.

    Ecoiffier T, El Annan J, Rashid S, Schaumberg D, Dana R. Modulation of integrin α4β1 (VLA-4) in dry eye disease. Arch Ophthalmol. 2008;126(12):1695–9.

    PubMed  Article  Google Scholar 

  99. 99.

    Chauhan SK, El Annan J, Ecoiffier T, et al. Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression. J Immunol. 2009;182(3):1247–52.

    PubMed  CAS  Google Scholar 

Download references


Dr. McCluskey has received payment for development of educational presentations (including service on speakers’ bureaus) from Novartis.

Drs. Skalicky, Petsoglou, Gurbaxani, and Fraser reported no potential conflicts of interest relevant to this article.

Author information



Corresponding author

Correspondence to Simon E. Skalicky.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Skalicky, S.E., Petsoglou, C., Gurbaxani, A. et al. New Agents for Treating Dry Eye Syndrome. Curr Allergy Asthma Rep 13, 322–328 (2013).

Download citation


  • Dry eye syndrome
  • Anti-inflammatory agents
  • Topical therapies
  • Treatment
  • Ocular lubricants
  • Artificial tears
  • Corticosteroids
  • NSAIDs
  • Cyclosporine A
  • Secretagogues
  • Essential fatty acids
  • New agents