Current Allergy and Asthma Reports

, Volume 12, Issue 2, pp 104–114 | Cite as

Rise of the Sensors: Nociception and Pruritus

Rhinitis (JN Baraniuk and JJ Oppenheimer, Section Editors)

Abstract

Once there was a day when all type C nonmyelinated neurons were indistinguishable. That time of histologic analysis has passed, and we have entered an era of unparalleled technological insight into the mechanisms of pain and pruritus. Since the description of the capsaicin receptor, transient receptor protein vanilloid 1 (TRPV1), in 1997, we have seen the number of related sensor ion channels, G protein–coupled receptors, and signaling proteins explode. Specific nociceptive pathways have been identified based on their sensitivity to mechanical, heat, chemical, and cold stimuli. Pruritus is now recognized to have both histamine-sensitive and histamine-independent afferent arcs. Cross-talk between C-fibre systems and myelinated neural pathways has become more complex, but through complexity, a new reality of sensory coding is emerging. A multitude of novel therapeutics have been and are in planning and production stages. These will almost certainly revolutionize our understanding and treatment of pain and itch by the end of this decade.

Keywords

Pain Itch Transient receptor potential Rhinitis Nociception Pruritus 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Smith ES, Lewin GR. Nociceptors: a phylogenetic view. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2009;1952:1089–106.Google Scholar
  2. 2.
    •• Dubin AE, Patapoutian A. Nociceptors: the sensors of the pain pathway. J Clin Invest. 2010;120:3760–3772, doi: 10.1172/JCI42843. This is an excellent summary of one classification of pain-mediating sensor systems and their interactions. PubMedCrossRefGoogle Scholar
  3. 3.
    Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150:971–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389:816–24.PubMedCrossRefGoogle Scholar
  5. 5.
    Yu FH and WA Catterall. The VGL-Chanome: a protein superfamily specialized for electrical signaling and ionic homeostatis. Science STKE. 2004;re15 www.stke.org/cgi/content/full/sigtrans;2004/253/re15.
  6. 6.
    Belmone C, Viana F. Molecular and cellular limits to somatosensory specificity. Molecular Pain. 2008;4:14.CrossRefGoogle Scholar
  7. 7.
    Vay L, Gu C, McNaughton PA. The thermo-TRP ion channel family: properties and therapeutic implications. Br J Pharmacol. 2011. doi:10.1111/j.1476-5381.2011.01601.x.
  8. 8.
    O’Hanlon S, Facer P, Simpson KD, Sandhu G, Saleh HA, Anand P. Neuronal markers in allergic rhinitis: expression and correlation with sensory testing. Laryngoscope. 2007;117:1519–27.PubMedCrossRefGoogle Scholar
  9. 9.
    Raap U, Braunstahl GJ. The role of neurotrophins in the pathophysiology of allergic rhinitis. Curr Opin Allergy Clin Immunol. 2010;10:8–13.PubMedCrossRefGoogle Scholar
  10. 10.
    Alenmyr L, Högestätt ED, Zygmunt PM, Greiff L. TRPV1-mediated itch in seasonal allergic rhinitis. Allergy. 2009;64:807–10.PubMedCrossRefGoogle Scholar
  11. 11.
    Baraniuk JN, Petrie KN, Le U, Tai CF, Park YJ, Yuta A, Ali M, Vandenbussche CJ, Nelson B. Neuropathology in rhinosinusitis. Am J Respir Crit Care Med. 2005;171:5–11.PubMedCrossRefGoogle Scholar
  12. 12.
    Alenmyr L, Greiff L, Andersson M, Sterner O, Zygmunt PM, Högestätt ED. Effect of mucosal TRPV1 inhibition in allergic rhinitis. Basic Clin Pharmacol Toxicol. 2011. doi:10.1111/j.1742-7843.2011.00803.x. Epub ahead of print.
  13. 13.
    Mair N, Benetti C, Andratsch M, Leitner MG, Constantin CE, Camprubí-Robles M, Quarta S, Biasio W, Kuner R, Gibbins IL, Kress M, Haberberger RV. Genetic evidence for involvement of neuronally expressed S1P1 receptor in nociceptor sensitization and inflammatory pain. PLoS One. 2011;6:e17268.PubMedCrossRefGoogle Scholar
  14. 14.
    Keh SM, Facer P, Yehia A, Sandhu G, Saleh HA, Anand P. The menthol and cold sensation receptor TRPM8 in normal human nasal mucosa and rhinitis. Rhinology. 2011;49:453–7.PubMedGoogle Scholar
  15. 15.
    •• Grace MS, Belvisi MG. TRPA1 receptors in cough. Pulm Pharmacol Ther. 2011;24:286–288. This is an excellent review of cough mechanisms and the potential role of TRPA1 receptors and nerve populations. PubMedCrossRefGoogle Scholar
  16. 16.
    Uta D, Furue H, Pickering AE, Rashid MH, Mizuguchi-Takase H, Katafuchi T, Imoto K, Yoshimura M. TRPA1-expressing primary afferents synapse with a morphologically identified subclass of substantia gelatinosa neurons in the adult rat spinal cord. Eur J Neurosci. 2010;31:1960–73.PubMedCrossRefGoogle Scholar
  17. 17.
    Nassini R, Gees M, Harrison S, De Siena G, Materazzi S, Moretto N, Failli P, Preti D, Marchetti N, Cavazzini A, Mancini F, Pedretti P, Nilius B, Patacchini R, Geppetti P. Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation. Pain. 2011;152:1621–31.PubMedCrossRefGoogle Scholar
  18. 18.
    Hori K, Ozaki N, Suzuki S, Sugiura Y. Upregulations of P2X(3) and ASIC3 involve in hyperalgesia induced by cisplatin administration in rats. Pain. 2010;149:393–405.PubMedCrossRefGoogle Scholar
  19. 19.
    Willis DN, Liu B, Ha MA, Jordt SE, Morris JB. Menthol attenuates respiratory irritation responses to multiple cigarette smoke irritants. FASEB J. 2011;25:4434–44.PubMedCrossRefGoogle Scholar
  20. 20.
    Deval E, Gasull X, Noël J, Salinas M, Baron A, Diochot S, Lingueglia E. Acid-sensing ion channels (ASICs): pharmacology and implication in pain. Pharmacol Ther. 2010;128:549–58.PubMedCrossRefGoogle Scholar
  21. 21.
    Light AR, White AT, Hughen RW, Light KC. Moderate exercise increases expression for sensory, adrenergic, and immune genes in chronic fatigue syndrome patients but not in normal subjects. J Pain. 2009;10:1099–112.PubMedCrossRefGoogle Scholar
  22. 22.
    •• Burnstock G, Krügel U, Abbracchio MP, Illes P. Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol. 2011;95:229–274. This is an excellent review of purinergic receptors and their functions in the central nervous system. PubMedCrossRefGoogle Scholar
  23. 23.
    Jankowski MP, Rau KK, Soneji DJ, Ekmann KM, Anderson CE, Molliver DC, Koerber HR. Purinergic receptor P2Y1 regulates polymodal C-fiber thermal thresholds and sensory neuron phenotypic switching during peripheral inflammation. Pain. 2011 Nov 30. [Epub ahead of print].Google Scholar
  24. 24.
    Paruchuri S, Tashimo H, Feng C, Maekawa A, Xing W, Jiang Y, Kanaoka Y, Conley P, Boyce JA. Leukotriene E4-induced pulmonary inflammation is mediated by the P2Y12 receptor. J Exp Med. 2009;206:2543–55.PubMedCrossRefGoogle Scholar
  25. 25.
    Hassenklöver T, Schwartz P, Schild D, Manzini I. Purinergic signaling regulates cell proliferation of olfactory epithelium progenitors. Stem Cells. 2009;27:2022–31.PubMedCrossRefGoogle Scholar
  26. 26.
    Kim CH, Kim SS, Choi JY, Shin JH, Kim JY, Namkung W, Lee JG, Lee MG, Yoon JH. Membrane-specific expression of functional purinergic receptors in normal human nasal epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2004;287:L835–42.PubMedCrossRefGoogle Scholar
  27. 27.
    Song KS, Kim HJ, Kim K, Lee JG, Yoon JH. Regulator of G-protein signaling 4 suppresses LPS-induced MUC5AC overproduction in the airway. Am J Respir Cell Mol Biol. 2009;41:40–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Rollins BM, Burn M, Coakley RD, Chambers LA, Hirsh AJ, Clunes MT, Lethem MI, Donaldson SH, Tarran R. A2B adenosine receptors regulate the mucus clearance component of the lung’s innate defense system. Am J Respir Cell Mol Biol. 2008;39:190–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Dussor G, Zylka MJ, Anderson DJ, McCleskey EW. Cutaneous sensory neurons expressing the Mrgprd receptor sense extracellular ATP and are putative nociceptors. J Neurophysiol. 2008;99:1581–9.PubMedCrossRefGoogle Scholar
  30. 30.
    •• Ma Q. Labeled lines meet and talk: population coding of somatic sensations. J Clin Invest. 2010;120(11):3773–8. doi: 10.1172/JCI43426. This is an important introduction to the patterns of C-fibre interactions that code for different sensations. PubMedCrossRefGoogle Scholar
  31. 31.
    Campero M, Baumann TK, Bostock H, Ochoa JL. Human cutaneous C fibres activated by cooling, heating and menthol. J Physiol. 2009;587:5633–52.PubMedCrossRefGoogle Scholar
  32. 32.
    Lindstedt F, Johansson B, Martinsen S, Kosek E, Fransson P, Ingvar M. Evidence for thalamic involvement in the thermal grill illusion: an FMRI study. PLoS One. 2011;6(11):e27075.PubMedCrossRefGoogle Scholar
  33. 33.
    Seifert F, Maihöfner C. Representation of cold allodynia in the human brain—a functional MRI study. NeuroImage. 2007;35:1168–80.PubMedCrossRefGoogle Scholar
  34. 34.
    Krämer HH, Stenner C, Seddigh S, Bauermann T, Birklein F, Maihöfner C. Illusion of pain: pre-existing knowledge determines brain activation of ‘imagined allodynia. J Pain. 2008;9:543–51.PubMedCrossRefGoogle Scholar
  35. 35.
    Boettger MK, Schwier C, Bär KJ. Sad mood increases pain sensitivity upon thermal grill illusion stimulation: implications for central pain processing. Pain. 2011;152:123–30.PubMedCrossRefGoogle Scholar
  36. 36.
    Braat JP, Mulder PG, Fokkens WJ, van Wijk RG, Rijntjes E. Intranasal cold dry air is superior to histamine challenge in determining the presence and degree of nasal hyperreactivity in nonallergic noninfectious perennial rhinitis. Am J Respir Crit Care Med. 1998;157:1748–55.PubMedGoogle Scholar
  37. 37.
    Nakaya M, Takeuchi N, Kondo K. Immunohistochemical localization of histamine receptor subtypes in human inferior turbinates. Ann Otol Rhinol Laryngol. 2004;113:552–7.PubMedGoogle Scholar
  38. 38.
    Andrew D, Craig AD. Spinothalamic lamina 1 neurons selectively sensitive to histamine: a central neural pathway for itch. Nat Neurosci. 2001;4:72–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Vaughan RP, Szewczyk Jr MT, Lanosa MJ, Desesa CR, Gianutsos G, Morris JB. Adenosine sensory transduction pathways contribute to activation of the sensory irritation response to inspirited irritant vapors. Toxicol Sci. 2006;93:411–21.PubMedCrossRefGoogle Scholar
  40. 40.
    Gao Z, Li JD, Sinoway LI, Li J. Effect of muscle interstitial pH on P2X and TRPV1 receptor-mediated pressor response. J Appl Physiol. 2007;102:2288–93.PubMedCrossRefGoogle Scholar
  41. 41.
    Wilson SR, Gerhold KA, Bifolck-Fisher A, Liu Q, Patel KN, Dong X, Bautista DM. TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch. Nat Neurosci. 2011;14:595–602.PubMedCrossRefGoogle Scholar
  42. 42.
    Johanek LM, Meyer RA, Hartke T, Hobelmann JG, Maine DN, LaMotte RH, Ringkamp M. Psychophysical and physiological evidence for parallel afferent pathways mediating the sensation of itch. J Neurosci. 2007;27:7490–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Shelley WB, Arthur RP. Studies on cowhage (Mucuna pruriens) and its pruritogenic proteinase, mucunain. AMA Arch Derm. 1955;72:399–406.PubMedCrossRefGoogle Scholar
  44. 44.
    Handwerker HO. Microneurography of pruritus. Neurosci Lett. 2010;19(470):193–6.CrossRefGoogle Scholar
  45. 45.
    • Davidson S, Giesler GJ. The multiple pathways for itch and their interactions with pain. Trends Neurosci. 2010;33:550–558. This is a useful distillation of pruritic mechanisms to two pathways and demonstration of the interactions of pain and itch systems. PubMedCrossRefGoogle Scholar
  46. 46.
    Swain MG. Gastrin-releasing peptide and pruritus: more than just scratching the surface. J Hepatol. 2008;48:681–3.PubMedCrossRefGoogle Scholar
  47. 47.
    Baraniuk JN, Lundgren JD, Goff J, Peden D, Merida M, Shelhamer J, Kaliner M. Gastrin-releasing peptide in human nasal mucosa. J Clin Invest. 1990;85:998–1005.PubMedCrossRefGoogle Scholar
  48. 48.
    • Ständer S, Raap U, Weisshaar E, Schmelz M, Mettang T, Handwerker H, Luger TA. Pathogenesis of pruritus. J Dtsch Dermatol Ges. 2011;9(6):456–63. doi:10.1111/j.1610-0387.2011.07585.x. This is a comprehensive examination of mechanisms of itch, including newer potential pathways. PubMedGoogle Scholar
  49. 49.
    Rieker J, Steinhoff M, Hoffmann TK, Ruzicka T, Zlotnik A, Homey B. IL-31: a new link between T cells and pruritus in atopic skin inflammation. J Allergy Clin Immunol. 2006;117:411–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Melzack R, Casey KL. Sensory, motivational and central control determinants of chronic pain: a new conceptual model. In: Kenshalo DR, editor. The skin senses: proceedings of the first international symposium on the skin senses. Springfield: Thomas; 1968.Google Scholar
  51. 51.
    Turk DC, Rudy TE. Toward an empirically derived taxonomy of chronic pain patients: integration of psychological assessment data. J Consult Clin Psychol. 1988;56:233–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Georgetown UniversityWashingtonUSA

Personalised recommendations