Skip to main content

Advertisement

Log in

Toll-like Receptors in Systemic Lupus Erythematosus: Potential Targets for Therapeutic Intervention

  • Basic and Applied Science (M Frieri, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Toll-like receptors (TLRs) have attracted increased attention in recent years, not only for their role in sensing conserved microbial components, but also in the realm of autoimmunity. Although TLRs are most widely known for their capacity to detect conserved motifs of infectious agents, mounting evidence indicates that these innate receptors also promote autoimmune conditions by causing uncontrolled autoinflammation as a result of chronic recognition of self. In response to the need for modern approaches to treatment of autoimmune diseases, several groups have begun investigating ways to target TLRs as new therapeutic options for autoimmune conditions. Here we discuss recent data describing advances in TLRs as therapeutic targets for treatment of autoimmune diseases, with a focus on systemic lupus erythematosus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801.

    Article  PubMed  CAS  Google Scholar 

  2. Yamamoto M, et al. Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science. 2003;301(5633):640–3.

    Article  PubMed  CAS  Google Scholar 

  3. Kawai T, Akira S. TLR signaling. Semin Immunol. 2007;19(1):24–32.

    Article  PubMed  CAS  Google Scholar 

  4. Hoebe K, Janssen E, Beutler B. The interface between innate and adaptive immunity. Nat Immunol. 2004;5(10):971–4.

    Article  PubMed  CAS  Google Scholar 

  5. Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001;2(8):675–80.

    Article  PubMed  CAS  Google Scholar 

  6. Park Y, et al. Association of the polymorphism for Toll-like receptor 2 with type I diabetes susceptibility. Ann N Y Acad Sci. 2004;1037:170–4.

    Article  PubMed  CAS  Google Scholar 

  7. Devaraj S, et al. Increased Toll-like receptor (TLR) 2 and TLR4 expression in monocytes from patients with type I diabetes: further evidence of a proinflammatory state. J Clin Endocrinol Metab. 2008;93(2):578–83.

    Article  PubMed  CAS  Google Scholar 

  8. Kim HS, et al. Toll-like receptor 2 senses beta-cell death and contributes to the initiation of autoimmune diabetes. Immunity. 2007;27(2):321–33.

    Article  PubMed  CAS  Google Scholar 

  9. Mohammad MK, et al. Dysregulated Toll-like receptor expression and signaling in bone marrow-derived macrophages at the onset of diabetes in the non-obese diabetic mouse. Int Immunol. 2006;18(7):1101–13.

    Article  PubMed  CAS  Google Scholar 

  10. Roelofs MF, et al. The expression of Toll-like receptors 3 and 7 in rheumatoid arthritis synovium is increased and costimulation of Toll-like receptors 3, 4, and 7/8 results in synergistic cytokine production by dendritic cells. Arthritis Rheum. 2005;52(8):2313–22.

    Article  PubMed  CAS  Google Scholar 

  11. Maciejewska Rodrigues H, et al. Innate immunity, epigenetics and autoimmunity in rheumatoid arthritis. Mol Immunol. 2009;47(1):12–8.

    Article  PubMed  CAS  Google Scholar 

  12. Anders HJ. A Toll for lupus. Lupus. 2005;14(6):417–22.

    Article  PubMed  CAS  Google Scholar 

  13. Christensen SR, et al. Toll-like receptor 9 controls anti-DNA autoantibody production in murine lupus. J Exp Med. 2005;202(2):321–31.

    Article  PubMed  CAS  Google Scholar 

  14. Christensen SR, et al. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity. 2006;25(3):417–28.

    Article  PubMed  CAS  Google Scholar 

  15. Lafyatis R, Marshak-Rothstein A. Toll-like receptors and innate immune responses in systemic lupus erythematosus. Arthritis Res Ther. 2007;9(6):222.

    Article  PubMed  Google Scholar 

  16. Subramanian S, et al. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc Natl Acad Sci U S A. 2006;103(26):9970–5.

    Article  PubMed  CAS  Google Scholar 

  17. Pisitkun P, et al. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science. 2006;312(5780):1669–72.

    Article  PubMed  CAS  Google Scholar 

  18. •• Shen, N., et al., Sex-specific association of X-linked Toll-like receptor 7 (TLR7) with male systemic lupus erythematosus. Proc Natl Acad Sci U S A, 2010. 107(36): p. 15838–43. This article describes the first association of TLR7 SNPs and SLE. The authors describe SNPs in TLR7 among Asian populations that associate with SLE, especially in males. This marks an important step in defining a relationship between TLRs and autoimmune disease.

    Article  PubMed  CAS  Google Scholar 

  19. •• Kawasaki, A., et al., TLR7 single nucleotide polymorphisms in the 3′ untranslated region and intron independently contribute to systemic lupus erythematosus in Japanese women: a case–control association study. Arthritis Res Ther, 2011. 13(2): p. 41. This work expanded the studies done by Shen et al. Here, additional SNPs are described, with particular attention paid to their association with SLE in Japanese women.

    Article  PubMed  CAS  Google Scholar 

  20. Hennessy EJ, Parker AE, O’Neill LA. Targeting Toll-like receptors: emerging therapeutics? Nat Rev Drug Discov. 2010;9(4):293–307.

    Article  PubMed  CAS  Google Scholar 

  21. Jarrossay D, et al. Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur J Immunol. 2001;31(11):3388–93.

    Article  PubMed  CAS  Google Scholar 

  22. Kadowaki N, et al. Subsets of human dendritic cell precursors express different Toll-like receptors and respond to different microbial antigens. J Exp Med. 2001;194(6):863–9.

    Article  PubMed  CAS  Google Scholar 

  23. O’Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol. 2007;7(5):353–64.

    Article  PubMed  Google Scholar 

  24. Medzhitov R, et al. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell. 1998;2(2):253–8.

    Article  PubMed  CAS  Google Scholar 

  25. Barton GM, Medzhitov R. Toll-like receptor signaling pathways. Science. 2003;300(5625):1524–5.

    Article  PubMed  CAS  Google Scholar 

  26. Kawai T, Akira S. Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci. 2008;1143:1–20.

    Article  PubMed  CAS  Google Scholar 

  27. Markin CJ, Saltibus LF, Spyracopoulos L. Dynamics of the RING domain from human TRAF6 by 15N NMR spectroscopy: implications for biological function. Biochemistry. 2008;47(38):10010–7.

    Article  PubMed  CAS  Google Scholar 

  28. Kawai T, et al. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol. 2004;5(10):1061–8.

    Article  PubMed  CAS  Google Scholar 

  29. Silverman N, Maniatis T. NF-kappaB signaling pathways in mammalian and insect innate immunity. Genes Dev. 2001;15(18):2321–42.

    Article  PubMed  CAS  Google Scholar 

  30. Taniguchi T, et al. IRF family of transcription factors as regulators of host defense. Annu Rev Immunol. 2001;19:623–55.

    Article  PubMed  CAS  Google Scholar 

  31. Colonna M. TLR pathways and IFN-regulatory factors: to each its own. Eur J Immunol. 2007;37(2):306–9.

    Article  PubMed  CAS  Google Scholar 

  32. McWhirter SM, et al. IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc Natl Acad Sci U S A. 2004;101(1):233–8.

    Article  PubMed  CAS  Google Scholar 

  33. •• Chockalingam, A., et al., Negative regulation of signaling by a soluble form of Toll-like receptor 9. Eur J Immunol, 2011. The authors describe a novel, cleaved form of TLR9 that in its soluble form can inhibit signaling through intact TLR9. This suggests an additional endogenous control mechanism of TLR signaling and a potential drug target for treatment of SLE.

  34. Dulay AT, et al. Soluble TLR2 is present in human amniotic fluid and modulates the intraamniotic inflammatory response to infection. J Immunol. 2009;182(11):7244–53.

    Article  PubMed  CAS  Google Scholar 

  35. Zunt SL, et al. Soluble forms of Toll-like receptor 4 are present in human saliva and modulate tumour necrosis factor-alpha secretion by macrophage-like cells. Clin Exp Immunol. 2009;156(2):285–93.

    Article  PubMed  CAS  Google Scholar 

  36. •• Demaria, O., et al., TLR8 deficiency leads to autoimmunity in mice. J Clin Invest, 2010. 120(10): p. 3651–62. A function of TLR8 has not been adequately described. Here, Demaria et al. describe an inhibitory role of TLR8 in mice. This article shows that TLR8 acts as an inhibitor of TLR7 expression, and its absence leads to autoimmunity in mice.

    PubMed  CAS  Google Scholar 

  37. Janssens S, et al. MyD88S, a splice variant of MyD88, differentially modulates NF-kappaB- and AP-1-dependent gene expression. FEBS Lett. 2003;548(1–3):103–7.

    Article  PubMed  CAS  Google Scholar 

  38. Kobayashi K, et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell. 2002;110(2):191–202.

    Article  PubMed  CAS  Google Scholar 

  39. Graham RR, et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat Genet. 2008;40(9):1059–61.

    Article  PubMed  CAS  Google Scholar 

  40. Vereecke L, Beyaert R, van Loo G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol. 2009;30(8):383–91.

    Article  PubMed  CAS  Google Scholar 

  41. •• Nanda, S.K., et al., Polyubiquitin binding to ABIN1 is required to prevent autoimmunity. J Exp Med, 2011. 208(6): p. 1215–28. This article discusses the protein ABIN1 as an inhibitor of NF-κB downstream of TLRs. ABIN1 mutant mice develop an autoimmune phenotype that is relieved in MyD88-deficient animals.

    Article  PubMed  CAS  Google Scholar 

  42. Moser KL, et al. Recent insights into the genetic basis of systemic lupus erythematosus. Genes Immun. 2009;10(5):373–9.

    Article  PubMed  CAS  Google Scholar 

  43. Merino R, Fossati L, Izui S. The lupus-prone BXSB strain: the Yaa gene model of systemic lupus erythematosus. Springer Semin Immunopathol. 1992;14(2):141–57.

    Article  PubMed  CAS  Google Scholar 

  44. • Kono, D.H., et al., Endosomal TLR signaling is required for anti-nucleic acid and rheumatoid factor autoantibodies in lupus. Proc Natl Acad Sci U S A, 2009. 106(29): p. 12061–6. By using Unc93b mutant mice, these authors showed that production of nucleic acid–specific autoantibodies is dependent on stimulation of nucleic acid–binding TLRs.

    Article  PubMed  CAS  Google Scholar 

  45. Herrmann M, et al. Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum. 1998;41(7):1241–50.

    Article  PubMed  CAS  Google Scholar 

  46. Pan, Z.J., et al., TLR7 modulates anti-nucleosomal autoantibody isotype and renal complement deposition in mice exposed to syngeneic late apoptotic cells. Ann Rheum Dis, 2009.

  47. •• Garcia-Ortiz, H., et al., Association of TLR7 copy number variation with susceptibility to childhood-onset systemic lupus erythematosus in Mexican population. Ann Rheum Dis, 2010. 69(10): p. 1861–5. This group analyzed the copy number variations of TLR7 among children with SLE compared with healthy controls. They showed that an increase in TLR7 copy numbers was associated with childhood SLE.

    Article  PubMed  CAS  Google Scholar 

  48. De Jager PL, et al. Genetic variation in Toll-like receptor 9 and susceptibility to systemic lupus erythematosus. Arthritis Rheum. 2006;54(4):1279–82.

    Article  PubMed  Google Scholar 

  49. Hur JW, et al. Association study of Toll-like receptor 9 gene polymorphism in Korean patients with systemic lupus erythematosus. Tissue Antigens. 2005;65(3):266–70.

    Article  PubMed  CAS  Google Scholar 

  50. Demirci FY, et al. Association study of Toll-like receptor 5 (TLR5) and Toll-like receptor 9 (TLR9) polymorphisms in systemic lupus erythematosus. J Rheumatol. 2007;34(8):1708–11.

    PubMed  CAS  Google Scholar 

  51. Ng MW, et al. Polymorphisms of the toll-like receptor 9 (TLR9) gene with systemic lupus erythematosus in Chinese. Rheumatology (Oxford). 2005;44(11):1456–7.

    Article  CAS  Google Scholar 

  52. Migita K, et al. Toll-like receptor expression in lupus peripheral blood mononuclear cells. J Rheumatol. 2007;34(3):493–500.

    PubMed  CAS  Google Scholar 

  53. Nakano S, et al. Role of pathogenic auto-antibody production by Toll-like receptor 9 of B cells in active systemic lupus erythematosus. Rheumatology (Oxford). 2008;47(2):145–9.

    Article  CAS  Google Scholar 

  54. Papadimitraki ED, et al. Expansion of Toll-like receptor 9-expressing B cells in active systemic lupus erythematosus: implications for the induction and maintenance of the autoimmune process. Arthritis Rheum. 2006;54(11):3601–11.

    Article  PubMed  CAS  Google Scholar 

  55. Bennett L, et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med. 2003;197(6):711–23.

    Article  PubMed  CAS  Google Scholar 

  56. Ytterberg SR, Schnitzer TJ. Serum interferon levels in patients with systemic lupus erythematosus. Arthritis Rheum. 1982;25(4):401–6.

    Article  PubMed  CAS  Google Scholar 

  57. Ioannou Y, Isenberg DA. Current evidence for the induction of autoimmune rheumatic manifestations by cytokine therapy. Arthritis Rheum. 2000;43(7):1431–42.

    Article  PubMed  CAS  Google Scholar 

  58. •• Visentini, M., et al., Regression of systemic lupus erythematosus after development of an acquired Toll-like receptor signaling defect and antibody deficiency. Arthritis Rheum, 2009. 60(9): p. 2767–71. Here an SLE patient is described to have long-term remission of disease after developing a CVID-like disease. Remission was due to a defect in TLR7 and TLR9 signaling that prevented the development of additional autoantibodies. This marks an important step in establishing a role for TLRs in human disease.

    Article  PubMed  CAS  Google Scholar 

  59. Bates JS, et al. Meta-analysis and imputation identifies a 109 kb risk haplotype spanning TNFAIP3 associated with lupus nephritis and hematologic manifestations. Genes Immun. 2009;10(5):470–7.

    Article  PubMed  CAS  Google Scholar 

  60. Musone SL, et al. Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat Genet. 2008;40(9):1062–4.

    Article  PubMed  CAS  Google Scholar 

  61. Adrianto I, et al. Association of a functional variant downstream of TNFAIP3 with systemic lupus erythematosus. Nat Genet. 2011;43(3):253–8.

    Article  PubMed  CAS  Google Scholar 

  62. •• Guiducci, C., et al., TLR recognition of self nucleic acids hampers glucocorticoid activity in lupus. Nature, 2010. 465(7300): p. 937–41. This article shows that TLRs can impair steroid activity in lupus. This reinforces the importance of targeting TLRs to supplement current treatment options in SLE.

    Article  PubMed  CAS  Google Scholar 

  63. Barrat FJ, et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J Exp Med. 2005;202(8):1131–9.

    Article  PubMed  CAS  Google Scholar 

  64. Duramad O, et al. Inhibitors of TLR-9 act on multiple cell subsets in mouse and man in vitro and prevent death in vivo from systemic inflammation. J Immunol. 2005;174(9):5193–200.

    PubMed  CAS  Google Scholar 

  65. Barrat FJ, et al. Treatment of lupus-prone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms. Eur J Immunol. 2007;37(12):3582–6.

    Article  PubMed  CAS  Google Scholar 

  66. Dong L, et al. Suppressive oligodeoxynucleotides delay the onset of glomerulonephritis and prolong survival in lupus-prone NZB x NZW mice. Arthritis Rheum. 2005;52(2):651–8.

    Article  PubMed  CAS  Google Scholar 

  67. Pawar RD, et al. Inhibition of Toll-like receptor-7 (TLR-7) or TLR-7 plus TLR-9 attenuates glomerulonephritis and lung injury in experimental lupus. J Am Soc Nephrol. 2007;18(6):1721–31.

    Article  PubMed  CAS  Google Scholar 

  68. Oda K, Kitano H. A comprehensive map of the Toll-like receptor signaling network. Mol Syst Biol. 2006;2:2006–0015.

    Article  Google Scholar 

  69. Bartfai T, et al. A low molecular weight mimic of the Toll/IL-1 receptor/resistance domain inhibits IL-1 receptor-mediated responses. Proc Natl Acad Sci U S A. 2003;100(13):7971–6.

    Article  PubMed  CAS  Google Scholar 

  70. Loiarro M, et al. Peptide-mediated interference of TIR domain dimerization in MyD88 inhibits interleukin-1-dependent activation of NF-{kappa}B. J Biol Chem. 2005;280(16):15809–14.

    Article  PubMed  CAS  Google Scholar 

  71. •• Capolunghi, F., et al., Pharmacological inhibition of TLR9 activation blocks autoantibody production in human B cells from SLE patients. Rheumatology (Oxford), 2010. 49(12): p. 2281–9. MyD88 inhibition impairs autoantibody production. B cells from SLE patients were stimulated with CpG in the presence or absence of the MyD88 inhibitor ST2825. The inhibitor suppressed the development of plasma cells and the production of autoantibodies, suggesting TLR inhibition as an adequate treatment of SLE.

    Article  CAS  Google Scholar 

  72. Suzuki N, et al. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature. 2002;416(6882):750–6.

    Article  PubMed  CAS  Google Scholar 

  73. Kim TW, et al. A critical role for IRAK4 kinase activity in Toll-like receptor-mediated innate immunity. J Exp Med. 2007;204(5):1025–36.

    Article  PubMed  CAS  Google Scholar 

  74. Wang Z, et al. IRAK-4 inhibitors for inflammation. Curr Top Med Chem. 2009;9(8):724–37.

    Article  PubMed  CAS  Google Scholar 

  75. Crow MK. Type I interferon in systemic lupus erythematosus. Curr Top Microbiol Immunol. 2007;316:359–86.

    Article  PubMed  CAS  Google Scholar 

  76. Ronnblom L, Pascual V. The innate immune system in SLE: type I interferons and dendritic cells. Lupus. 2008;17(5):394–9.

    Article  PubMed  CAS  Google Scholar 

  77. •• Merrill, J.T., et al., Safety profile and clinical activity of sifalimumab, a fully human anti-interferon {alpha} monoclonal antibody, in systemic lupus erythematosus: a phase I, multicentre, double-blind randomised study. Ann Rheum Dis, 2011. This article shows the potential effectiveness of sifalimumab, a monoclonal antibody directed toward IFN-α. Phase 1 clinical data describe trends toward decreased SLEDAI scores and fewer flares in SLE patients treated with sifalimumab.

  78. Chuang TH, Ulevitch RJ. Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat Immunol. 2004;5(5):495–502.

    Article  PubMed  CAS  Google Scholar 

  79. Xie Q, et al. Loss of the innate immunity negative regulator IRAK-M leads to enhanced host immune defense against tumor growth. Mol Immunol. 2007;44(14):3453–61.

    Article  PubMed  CAS  Google Scholar 

  80. Lartigue A, et al. Critical role of TLR2 and TLR4 in autoantibody production and glomerulonephritis in lpr mutation-induced mouse lupus. J Immunol. 2009;183(10):6207–16.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Darise Farris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horton, C.G., Farris, A.D. Toll-like Receptors in Systemic Lupus Erythematosus: Potential Targets for Therapeutic Intervention. Curr Allergy Asthma Rep 12, 1–7 (2012). https://doi.org/10.1007/s11882-011-0234-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-011-0234-3

Keywords

Navigation