Skip to main content

Advertisement

Log in

Basophils and Autoreactive IgE in the Pathogenesis of Systemic Lupus Erythematosus

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Systemic lupus erythematosus (SLE) is a heterogeneous disease that can affect multiple organs. A hallmark of this disease, as is the case for other autoimmune diseases, is the presence of large numbers of autoantibodies. As such, SLE is considered to be a B-cell disease perpetuated by the expansion of autoreactive T and B cells. The T cells involved have long been considered to be T-helper type 1 (Th1) and Th17 cells, as these potent proinflammatory cells can be found in the tissues of SLE patients. Recent advances point to a role for the Th2 environment in contributing to SLE through promotion of autoantibody production. Here we describe the recent work focusing on autoreactive IgE and the activation of basophils as promoting the production of autoantibodies in SLE. The findings, both in a murine model of SLE and in humans with SLE, support the concept that the activation of the basophil by autoreactive IgE-containing immune complexes serves to amplify the production of autoantibodies and contributes to the pathogenesis of disease. We propose that therapeutic targeting of this amplification loop by reducing the levels of circulating autoreactive IgE may have benefit in SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Rahman A, Isenberg DA. Systemic lupus erythematosus. N Engl J Med. 2008;358:929–39. This scholarly review summarizes the current knowledge on the pathophysiology of SLE.

    Article  PubMed  CAS  Google Scholar 

  2. Perry D, Sang A, Yin Y, et al. Murine models of systemic lupus erythematosus. J Biomed Biotechnol. 2011;2011:271694.

    Article  PubMed  Google Scholar 

  3. Sobel ES, Satoh M, Chen Y, et al. The major murine systemic lupus erythematosus susceptibility locus Sle1 results in abnormal functions of both B and T cells. J Immunol. 2002;169:2694–700.

    PubMed  CAS  Google Scholar 

  4. Chan OT, Madaio MP, Shlomchik MJ. The central and multiple roles of B cells in lupus pathogenesis. Immunol Rev. 1999;169:107–21.

    Article  PubMed  CAS  Google Scholar 

  5. Lipsky PE. Systemic lupus erythematosus: an autoimmune disease of B cell hyperactivity. Nat Immunol. 2001;2:764–6.

    Article  PubMed  CAS  Google Scholar 

  6. Calero I, Sanz I. Targeting B cells for the treatment of SLE: the beginning of the end or the end of the beginning? Discov Med. 2010;10:416–424.

  7. Navarra SV, Guzman RM, Gallacher AE, et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet. 2011;377:721–31.

    Article  PubMed  CAS  Google Scholar 

  8. Looney RJ. B cell-targeted therapies for systemic lupus erythematosus: an update on clinical trial data. Drugs. 2010;70:529–40.

    Article  PubMed  CAS  Google Scholar 

  9. Davidson A. Targeting BAFF in autoimmunity. Curr Opin Immunol. 2010;22:732–9.

    Article  PubMed  CAS  Google Scholar 

  10. Peng SL, Szabo SJ, Glimcher LH. T-bet regulates IgG class switching and pathogenic autoantibody production. Proc Natl Acad Sci USA. 2002;99:5545–50.

    Article  PubMed  CAS  Google Scholar 

  11. Mangini AJ, Lafyatis R, Van Seventer JM. Type I interferons inhibition of inflammatory T helper cell responses in systemic lupus erythematosus. Ann N Y Acad Sci. 2007;1108:11–23.

    Article  PubMed  CAS  Google Scholar 

  12. Charles N, Hardwick D, Daugas E, et al. Basophils and the T helper 2 environment can promote the development of lupus nephritis. Nat Med. 2010;16:701–7.

    Article  PubMed  CAS  Google Scholar 

  13. Ronnblom L, Pascual V. The innate immune system in SLE: type I interferons and dendritic cells. Lupus. 2008;17:394–9.

    Article  PubMed  CAS  Google Scholar 

  14. Monk CR, Spachidou M, Rovis F, et al. MRL/Mp CD4+, CD25− T cells show reduced sensitivity to suppression by CD4+, CD25+ regulatory T cells in vitro: a novel defect of T cell regulation in systemic lupus erythematosus. Arthritis Rheum. 2005;52:1180–4.

    Article  PubMed  CAS  Google Scholar 

  15. Miyara M, Amoura Z, Parizot C, et al. Global natural regulatory T cell depletion in active systemic lupus erythematosus. J Immunol. 2005;175:8392–400.

    PubMed  CAS  Google Scholar 

  16. Nagpal S, Sriramarao P, Krishnaswamy PR, et al. Demonstration of IgE antibodies to nucleic acid antigens in patients with SLE. Autoimmunity. 1990;8:59–64.

    Article  PubMed  CAS  Google Scholar 

  17. Permin H, Wiik A. The prevalence of IgE antinuclear antibodies in rheumatoid arthritis and systemic lupus erythematosus. Acta Pathol Microbiol Scand C. 1978;86C:245–9.

    PubMed  CAS  Google Scholar 

  18. Atta AM, Sousa CP, Carvalho EM, et al. Immunoglobulin E and systemic lupus erythematosus. Braz J Med Biol Res. 2004;37:1497–501.

    PubMed  CAS  Google Scholar 

  19. Oxelius VA, Immunoglobulin G. (IgG) subclasses and human disease. Am J Med. 1984;76:7–18.

    Article  PubMed  CAS  Google Scholar 

  20. Kingsmore SF, Thompson JM, Crockard AD, et al. Measurement of circulating immune complexes containing IgG, IgM, IgA and IgE by flow cytometry: correlation with disease activity in patients with systemic lupus erythematosus. J Clin Lab Immunol. 1989;30:45–52.

    PubMed  CAS  Google Scholar 

  21. Elkayam O, Tamir R, Pick AI, et al. Serum IgE concentrations, disease activity, and atopic disorders in systemic lupus erythematosus. Allergy. 1995;50:94–6.

    PubMed  CAS  Google Scholar 

  22. Sequeira JF, Cesic D, Keser G, et al. Allergic disorders in systemic lupus erythematosus. Lupus. 1993;2:187–91.

    Article  PubMed  CAS  Google Scholar 

  23. Wozniacka A, Sysa-Jedrzejowska A, Robak E, et al. Allergic diseases, drug adverse reactions and total immunoglobulin E levels in lupus erythematosus patients. Mediators Inflamm. 2003;12:95–9.

    Article  PubMed  Google Scholar 

  24. Sekigawa I, Yoshiike T, Iida N, et al. Allergic diseases in systemic lupus erythematosus: prevalence and immunological considerations. Clin Exp Rheumatol. 2003;21:117–21.

    PubMed  CAS  Google Scholar 

  25. •• Karasuyama H, Mukai K, Obata K, et al. Nonredundant roles of basophils in immunity. Annu Rev Immunol. 2011;29:45–69. This comprehensive review describes the latest advances in basophil biology. The review focuses on the tools available for studies of murine basophils and the newly described roles of basophils in health and disease

    Article  PubMed  CAS  Google Scholar 

  26. Denzel A, Maus UA, Rodriguez Gomez M, et al. Basophils enhance immunological memory responses. Nat Immunol. 2008;9:733–42.

    Article  PubMed  CAS  Google Scholar 

  27. Oh K, Shen T, Le Gros G, et al. Induction of Th2 type immunity in a mouse system reveals a novel immunoregulatory role of basophils. Blood. 2007;109:2921–7.

    PubMed  CAS  Google Scholar 

  28. Hida S, Tadachi M, Saito T, et al. Negative control of basophil expansion by IRF-2 critical for the regulation of Th1/Th2 balance. Blood. 2005;106:2011–7.

    Article  PubMed  CAS  Google Scholar 

  29. Sokol CL, Barton GM, Farr AG, et al. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat Immunol. 2008;9:310–8.

    Article  PubMed  CAS  Google Scholar 

  30. Charles N, Watford WT, Ramos HL, et al. Lyn kinase controls basophil GATA-3 transcription factor expression and induction of Th2 cell differentiation. Immunity. 2009;30:533–43.

    Article  PubMed  CAS  Google Scholar 

  31. • Perrigoue JG, Saenz SA, Siracusa MC, et al. MHC class II-dependent basophil-CD4+ T cell interactions promote T(H)2 cytokine-dependent immunity. Nat Immunol. 2009;10:697–705. This article and those by Yoshimoto et al. [32] and by Sokol et al. [33] (all published together) demonstrate that basophils can act as professional antigen-presenting cells in Th2-cell responses.

    Article  PubMed  CAS  Google Scholar 

  32. Yoshimoto T, Yasuda K, Tanaka H, et al. Basophils contribute to T(H)2-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4+ T cells. Nat Immunol. 2009;10:706–12.

    Article  PubMed  CAS  Google Scholar 

  33. Sokol CL, Chu NQ, Yu S, et al. Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat Immunol. 2009;10:713–20.

    Article  PubMed  CAS  Google Scholar 

  34. Rodriguez Gomez M, Talke Y, Goebel N, et al. Basophils support the survival of plasma cells in mice. J Immunol. 2010;185:7180–5.

    Article  PubMed  Google Scholar 

  35. Mukai K, Matsuoka K, Taya C, et al. Basophils play a critical role in the development of IgE-mediated chronic allergic inflammation independently of T cells and mast cells. Immunity. 2005;23:191–202.

    Article  PubMed  CAS  Google Scholar 

  36. Ohnmacht C, Schwartz C, Panzer M, et al. Basophils orchestrate chronic allergic dermatitis and protective immunity against helminths. Immunity. 2010;33:364–74.

    Article  PubMed  CAS  Google Scholar 

  37. • Tang H, Cao W, Kasturi SP, et al. The T helper type 2 response to cysteine proteases requires dendritic cell-basophil cooperation via ROS-mediated signaling. Nat Immunol. 2010;11:608–17. This article reconciles the role of dendritic cells and basophils in the induction of papaïn-induced Th2 responses by demonstrating their collaboration.

    Article  PubMed  CAS  Google Scholar 

  38. Hibbs ML, Harder KW. The duplicitous nature of the Lyn tyrosine kinase in growth factor signaling. Growth Factors. 2006;24:137–49.

    Article  PubMed  CAS  Google Scholar 

  39. Yamanashi Y, Mori S, Yoshida M, et al. Selective expression of a protein-tyrosine kinase, p56lyn, in hematopoietic cells and association with production of human T-cell lymphotropic virus type I. Proc Natl Acad Sci USA. 1989;86:6538–42.

    Article  PubMed  CAS  Google Scholar 

  40. DeFranco AL, Chan VW, Lowell CA. Positive and negative roles of the tyrosine kinase Lyn in B cell function. Semin Immunol. 1998;10:299–307.

    Article  PubMed  CAS  Google Scholar 

  41. Janas ML, Hodgkin P, Hibbs M, et al. Genetic evidence for Lyn as a negative regulator of IL-4 signaling. J Immunol. 1999;163:4192–8.

    PubMed  CAS  Google Scholar 

  42. Wang J, Koizumi T, Watanabe T. Altered antigen receptor signaling and impaired Fas-mediated apoptosis of B cells in Lyn-deficient mice. J Exp Med. 1996;184:831–8.

    Article  PubMed  CAS  Google Scholar 

  43. Parravicini V, Gadina M, Kovarova M, et al. Fyn kinase initiates complementary signals required for IgE-dependent mast cell degranulation. Nat Immunol. 2002;3:741–8.

    PubMed  CAS  Google Scholar 

  44. Odom S, Gomez G, Kovarova M, et al. Negative regulation of immunoglobulin E-dependent allergic responses by Lyn kinase. J Exp Med. 2004;199:1491–502.

    Article  PubMed  CAS  Google Scholar 

  45. Yamashita Y, Charles N, Furumoto Y, et al. Cutting edge: genetic variation influences Fc epsilonRI-induced mast cell activation and allergic responses. J Immunol. 2007;179:740–3.

    PubMed  CAS  Google Scholar 

  46. Baran CP, Tridandapani S, Helgason CD, et al. The inositol 5′-phosphatase SHIP-1 and the Src kinase Lyn negatively regulate macrophage colony-stimulating factor-induced Akt activity. J Biol Chem. 2003;278:38628–36.

    Article  PubMed  CAS  Google Scholar 

  47. Harder KW, Parsons LM, Armes J, et al. Gain- and loss-of-function Lyn mutant mice define a critical inhibitory role for Lyn in the myeloid lineage. Immunity. 2001;15:603–15.

    Article  PubMed  CAS  Google Scholar 

  48. Hibbs ML, Tarlinton DM, Armes J, et al. Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell. 1995;83:301–11.

    Article  PubMed  CAS  Google Scholar 

  49. Nishizumi H, Taniuchi I, Yamanashi Y, et al. Impaired proliferation of peripheral B cells and indication of autoimmune disease in lyn-deficient mice. Immunity. 1995;3:549–60.

    Article  PubMed  CAS  Google Scholar 

  50. Flores-Borja F, Kabouridis PS, Jury EC, et al. Decreased Lyn expression and translocation to lipid raft signaling domains in B lymphocytes from patients with systemic lupus erythematosus. Arthritis Rheum. 2005;52:3955–65.

    Article  PubMed  CAS  Google Scholar 

  51. • Lu R, Vidal GS, Kelly JA, et al. Genetic associations of LYN with systemic lupus erythematosus. Genes Immun. 2009;10:397–403. This work identifies single nucleotide polymorphisms in the LYN gene of some SLE patients. The gene is associated with the levels of autoantibodies.

    Article  PubMed  CAS  Google Scholar 

  52. Eiseman E, Bolen JB. Engagement of the high-affinity IgE receptor activates src protein-related tyrosine kinases. Nature. 1992;355:78–80.

    Article  PubMed  CAS  Google Scholar 

  53. Beavitt SJ, Harder KW, Kemp JM, et al. Lyn-deficient mice develop severe, persistent asthma: Lyn is a critical negative regulator of Th2 immunity. J Immunol. 2005;175:1867–75.

    PubMed  CAS  Google Scholar 

  54. Hernandez-Hansen V, Smith AJ, Surviladze Z, et al. Dysregulated FcepsilonRI signaling and altered Fyn and SHIP activities in Lyn-deficient mast cells. J Immunol. 2004;173:100–12.

    PubMed  CAS  Google Scholar 

  55. Damen JE, Ware MD, Kalesnikoff J, et al. SHIP’s C-terminus is essential for its hydrolysis of PIP3 and inhibition of mast cell degranulation. Blood. 2001;97:1343–51.

    Article  PubMed  CAS  Google Scholar 

  56. Harding CV. Cellular and molecular aspects of antigen processing and the function of class II MHC molecules. Am J Respir Cell Mol Biol. 1993;8:461–7.

    PubMed  CAS  Google Scholar 

  57. • Chen K, Xu W, Wilson M, et al. Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell-stimulating programs in basophils. Nat Immunol. 2009;10:889–98. This article describes the involvement of basophils in chronic inflammatory diseases via the binding of IgD, which allows the basophils to boost the immune surveillance.

    Article  PubMed  CAS  Google Scholar 

  58. Holgate S, Buhl R, Bousquet J, et al. The use of omalizumab in the treatment of severe allergic asthma: a clinical experience update. Respir Med. 2009;103:1098–113.

    Article  PubMed  Google Scholar 

  59. Ben-Shoshan M. Omalizumab: not only for asthma. Recent Pat Inflamm Allergy Drug Discov. 2008;2:191–201.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The research of Dr. Rivera, reported herein, was supported by the Intramural Research Program of the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health.

Disclosure

Dr. Charles is routinely reimbursed for travel expenses incurred by multiple entities for which he serves as a guest speaker.

Dr. Rivera is a member of the Keystone Symposia Scientific Advisory Board (he receives no compensation) and is routinely reimbursed for travel expenses incurred by multiple entities for which he serves as a guest speaker.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Rivera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charles, N., Rivera, J. Basophils and Autoreactive IgE in the Pathogenesis of Systemic Lupus Erythematosus. Curr Allergy Asthma Rep 11, 378–387 (2011). https://doi.org/10.1007/s11882-011-0216-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-011-0216-5

Keywords

Navigation