Skip to main content

Advertisement

Log in

Immune Dysregulation in the Pathogenesis of Pulmonary Alveolar Proteinosis

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Pulmonary alveolar proteinosis (PAP) is a rare disease of the lung characterized by the accumulation of surfactant-derived lipoproteins within pulmonary alveolar macrophages and alveoli, resulting in respiratory insufficiency and increased infections. The disease is caused by a disruption in surfactant catabolism by alveolar macrophages due to loss of functional granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling. The underlying molecular mechanisms causing deficiencies in GM-CSF signaling are as follows: 1) high levels of neutralizing GM-CSF autoantibodies observed in autoimmune PAP; 2) mutations in CSF2RA, the gene encoding the α chain of the GM-CSF receptor, observed in hereditary PAP; and 3) reduced numbers and function of alveolar macrophages as a result of other clinical diseases seen in secondary PAP. Recent studies investigating the biology of GM-CSF have revealed that not only does this cytokine have an indispensable role in lung physiology, but it is also a critical regulator of innate immunity and lung host defense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Trapnell BC, Whitsett JA, Nakata K: Pulmonary alveolar proteinosis. N Engl J Med 2003, 349:2527–2539.

    Article  CAS  PubMed  Google Scholar 

  2. • Carey B, Trapnell BC: The molecular basis of pulmonary alveolar proteinosis. Clin Immunol 2010, 135:223–235. This review provides an updated and comprehensive summary of the current literature in the field of PAP.

    Article  CAS  PubMed  Google Scholar 

  3. Trapnell BC, Carey BC, Uchida K, Suzuki T: Pulmonary alveolar proteinosis, a primary immunodeficiency of impaired GM-CSF stimulation of macrophages. Curr Opin Immunol 2009, 21:514–521.

    Article  CAS  PubMed  Google Scholar 

  4. Kitamura, T, Tanaka N, Watanabe J, et al.: Idiopathic pulmonary alveolar proteinosis as an autoimmune disease with neutralizing antibody against granulocyte/macrophage colony-stimulating factor. J Exp Med 1999, 190:875–880.

    Article  CAS  PubMed  Google Scholar 

  5. Bonfield TL, Russell D, Burgess S, et al.: Autoantibodies against granulocyte macrophage colony-stimulating factor are diagnostic for pulmonary alveolar proteinosis. Am J Respir Cell Mol Biol 2002, 27:481–486.

    CAS  PubMed  Google Scholar 

  6. Uchida K, Nakata K, Trapnell BC, et al.: High-affinity autoantibodies specifically eliminate granulocyte-macrophage colony-stimulating factor activity in the lungs of patients with idiopathic pulmonary alveolar proteinosis. Blood 2004, 103:1089–1098.

    Article  CAS  PubMed  Google Scholar 

  7. •• Martinez-Moczygemba M, Doan ML, Elidemir O, et al.: Pulmonary alveolar proteinosis caused by deletion of the GM-CSFRalpha gene in the X chromosome pseudoautosomal region 1. J Exp Med 2008, 205:2711–2716. This study was the first to report the identification of a genetic deletion in the human GM-CSFRα gene contributing to hereditary PAP and reduced immune responsiveness. This study helped define PAP as a primary immunodeficiency disease of impaired GM-CSF stimulation of macrophages.

    Article  CAS  PubMed  Google Scholar 

  8. •• Suzuki T, Sakagami T, Rubin BK, et al.: Familial pulmonary alveolar proteinosis caused by mutations in CSF2RA. J Exp Med 2008, 205:2703–2710. This study was the first to report the identification of specific point mutations in the human GM-CSFRα gene leading to decreased GM-CSFR binding affinity to GM-CSF and thus contributing to hereditary PAP. This study helped define PAP as a primary immunodeficiency disease of impaired GM-CSF stimulation of macrophages.

    Article  PubMed  Google Scholar 

  9. Dirksen U, Nishinakamura R, Groneck P, et al.: Human pulmonary alveolar proteinosis associated with a defect in GM-CSF/IL-3/IL-5 receptor common beta chain expression. J Clin Invest 1997, 100:2211–2217.

    Article  CAS  PubMed  Google Scholar 

  10. Dirksen U, Hattenhorst U, Schneider P, et al.: Defective expression of granulocyte-macrophage colony-stimulating factor/interleukin-3/interleukin-5 receptor common beta chain in children with acute myeloid leukemia associated with respiratory failure. Blood 1998, 92:1097–1103.

    CAS  PubMed  Google Scholar 

  11. Robb L, Drinkwater C, Metcalf D, et al.: Hematopoietic and lung abnormalities in mice with a null mutation of the common beta subunit of the receptors for granulocyte-macrophage colony-stimulating factor and interleukins 3 and 5. Proc Natl Acad Sci U S A 1995, 92:9565–9569.

    Article  CAS  PubMed  Google Scholar 

  12. Nishinakamura R, Nakayama N, Hirabayashi Y, et al.: Mice deficient for the IL-3/GM-CSF/IL-5 beta c receptor exhibit lung pathology and impaired immune response, while beta IL3 receptor-deficient mice are normal. Immunity 1995, 2:211–222.

    Article  CAS  PubMed  Google Scholar 

  13. Hamvas A, Cole FS, Nogee LM: Genetic disorders of surfactant proteins. Neonatology 2007, 91:311–317.

    Article  CAS  PubMed  Google Scholar 

  14. Nogee LM, Dunbar AE III, Wert SE, et al.: A mutation in the surfactant protein C gene associated with familial interstitial lung disease. N Engl J Med 2001, 344:573–579.

    Article  CAS  PubMed  Google Scholar 

  15. Nogee LM, Garnier G, Dietz HC, et al.: A mutation in the surfactant protein B gene responsible for fatal neonatal respiratory disease in multiple kindreds. J Clin Invest 1994, 93:1860–1863.

    Article  CAS  PubMed  Google Scholar 

  16. Nogee LM, deMello DE, Dehner LP, Colten HR: Deficiency of pulmonary surfactant protein B in congenital alveolar proteinosis. N Engl J Med 1993, 328:406–410.

    Article  CAS  PubMed  Google Scholar 

  17. Rubin E, Weisbrod GL, Sanders DE: Pulmonary alveolar proteinosis: relationship to silicosis and pulmonary infection. Radiology 1980, 135:35–41.

    CAS  PubMed  Google Scholar 

  18. Ruben FL, Talamo TS: Secondary pulmonary alveolar proteinosis occurring in two patients with acquired immune deficiency syndrome. Am J Med 1986, 80:1187–1190.

    Article  CAS  PubMed  Google Scholar 

  19. Abdul Rahman JA, Moodley UP, Phillips MJ: Pulmonary alveolar proteinosis associated with psoriasis and complicated by mycobacterial infection: successful treatment with granulocyte-macrophage colony stimulating factor after a partial response to whole lung lavage. Respirology 2004, 9:419–422.

    Google Scholar 

  20. Cordonnier C, Fleury-Feith J, Escudier E, et al.: Secondary alveolar proteinosis is a reversible cause of respiratory failure in leukemic patients. Am J Respir Crit Care Med 1994, 149:788–794.

    CAS  PubMed  Google Scholar 

  21. Iyonaga K, Suga M, Yamamoto T, et al.: Elevated bronchoalveolar concentrations of MCP-1 in patients with pulmonary alveolar proteinosis. Eur Respir J 1999, 14:383–389.

    Article  CAS  PubMed  Google Scholar 

  22. Paine R 3rd, Morris SB, Jin H, et al.: Impaired functional activity of alveolar macrophages from GM-CSF-deficient mice. Am J Physiol Lung Cell Mol Physiol 2001, 281:L1210–L1218.

    CAS  PubMed  Google Scholar 

  23. Stanley E, Lieschke GJ, Grail D, et al.: Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc Natl Acad Sci U S A 1994, 91:5592–5596.

    Article  CAS  PubMed  Google Scholar 

  24. Zsengeller ZK, Reed JA, Bachurski CJ, et al.: Adenovirus-mediated granulocyte-macrophage colony-stimulating factor improves lung pathology of pulmonary alveolar proteinosis in granulocyte-macrophage colony-stimulating factor-deficient mice. Hum Gene Ther 1998, 9:2101–2109.

    Article  CAS  PubMed  Google Scholar 

  25. Nishinakamura R, Wiler R, Dirksen U, et al.: The pulmonary alveolar proteinosis in granulocyte macrophage colony-stimulating factor/interleukins 3/5 beta c receptor-deficient mice is reversed by bone marrow transplantation. J Exp Med 1996, 183:2657–2662.

    Article  CAS  PubMed  Google Scholar 

  26. Reed JA, Ikegami M, Cianciolo ER, et al.: Aerosolized GM-CSF ameliorates pulmonary alveolar proteinosis in GM-CSF-deficient mice. Am J Physiol 1999, 276:L556–L563.

    CAS  PubMed  Google Scholar 

  27. Shibata Y, Berclaz PY, Chroneos ZC, et al.: GM-CSF regulates alveolar macrophage differentiation and innate immunity in the lung through PU.1. Immunity 2001, 15:557–567.

    Google Scholar 

  28. Miyajima A, Kitamura T, Harada N, et al.: Cytokine receptors and signal transduction. Annu Rev Immunol 1992, 10:295–331.

    Article  CAS  PubMed  Google Scholar 

  29. Stone KD, Prussin C, Metcalfe DD: IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol 2010, 125(2 Suppl 2):S73–S80.

    PubMed  Google Scholar 

  30. Blanchard C, Rothenberg ME: Biology of the eosinophil. Adv Immunol 2009, 101:81–121.

    Article  CAS  PubMed  Google Scholar 

  31. Metcalf D: Hematopoietic cytokines. Blood 2008, 111:485–491.

    Article  CAS  PubMed  Google Scholar 

  32. Mellman I, Steinman RM: Dendritic cells: specialized and regulated antigen processing machines. Cell 2001, 106:255–258.

    Article  CAS  PubMed  Google Scholar 

  33. Shibasaki T, Katayama N, Ohishi K, et al.: IL-3 cannot replace GM-CSF in inducing human monocytes to differentiate into Langerhans cells. Int J Oncol 2007, 30:549–555.

    CAS  PubMed  Google Scholar 

  34. Fleetwood AJ, Cook AD, Hamilton JA: Functions of granulocyte-macrophage colony-stimulating factor. Crit Rev Immunol 2005, 25:405–428.

    Article  CAS  PubMed  Google Scholar 

  35. Hamilton JA, Anderson GP: GM-CSF biology. Growth Factors 2004, 22:225–233.

    Article  CAS  PubMed  Google Scholar 

  36. Seymour JF, Lieschke GJ, Grail D, et al.: Mice lacking both granulocyte colony-stimulating factor (CSF) and granulocyte-macrophage CSF have impaired reproductive capacity, perturbed neonatal granulopoiesis, lung disease, amyloidosis, and reduced long-term survival. Blood 1997, 90:3037–3049.

    CAS  PubMed  Google Scholar 

  37. •• Hansen G, Hercus TR, McClure BJ, et al.: The structure of the GM-CSF receptor complex reveals a distinct mode of cytokine receptor activation. Cell 2008, 134:496–507. This seminal paper reported the crystal structure of the ligated GM-CSFR, revealing an unexpected higher-order dodecamer complex of the receptor. The findings presented in this report provided a structural basis for understanding the mechanism of activation of βc-sharing cytokine receptors.

    Article  CAS  PubMed  Google Scholar 

  38. •• Hercus TR, Thomas D, Guthridge MA, et al.: The granulocyte-macrophage colony-stimulating factor receptor: linking its structure to cell signaling and its role in disease. Blood 2009, 114:1289–1298. This updated and comprehensive review discusses the findings reported in the article by Hansen et al. [37••] and elegantly links GM-CSFR structure to cell signaling in health and disease. The authors delineate how the new insights in GM-CSFR activation can be used for the development of new therapeutics targeted at cancer and inflammatory diseases.

    Article  CAS  PubMed  Google Scholar 

  39. Martinez-Moczygemba M, Huston DP: Biology of common beta receptor-signaling cytokines: IL-3, IL-5, and GM-CSF. J Allergy Clin Immunol 2003, 112:653–665.

    Article  CAS  PubMed  Google Scholar 

  40. Guthridge MA, Powell JA, Barry EF, et al.: Growth factor pleiotropy is controlled by a receptor Tyr/Ser motif that acts as a binary switch. EMBO J 2006, 25:479–489.

    Article  CAS  PubMed  Google Scholar 

  41. • Sakagami T, Uchida K, Suzuki T, et al.: Human GM-CSF autoantibodies and reproduction of pulmonary alveolar proteinosis. N Engl J Med 2009, 361:2679–2681. This is the first direct demonstration of passive transfer of human anti–GM-CSF antibodies causing PAP.

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by grants from the National Institutes of Health (AI063178 to Dr. Martinez-Moczygemba; U19AI071130 and AI36936 to Dr. Huston).

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Huston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez-Moczygemba, M., Huston, D.P. Immune Dysregulation in the Pathogenesis of Pulmonary Alveolar Proteinosis. Curr Allergy Asthma Rep 10, 320–325 (2010). https://doi.org/10.1007/s11882-010-0134-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-010-0134-y

Keywords

Navigation