Skip to main content

Advertisement

Log in

Aberrant Interaction of the Gut Immune System with Environmental Factors in the Development of Food Allergies

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

The gastrointestinal immune system is a major component of the mucosal barrier, which maintains an immunologic homeostasis between the host and the harsh environment of the gut. This homeostasis is achieved by immunologic quiescence, and its dysregulation is thought to result from the development of immune diseases such as food allergies. Recent findings have revealed versatile pathways in the development of intestinal allergies to certain food antigens. In this review, we summarize the regulatory and quiescence mechanisms in the gut immune system and describe aberrant interactions between the host immune system and the gut environment in the development of food allergies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Devereux G: The increase in the prevalence of asthma and allergy: food for thought. Nat Rev Immunol 2006, 6:869–874.

    Article  CAS  PubMed  Google Scholar 

  2. Theoharides TC, Kempuraj D, Tagen M, et al.: Differential release of mast cell mediators and the pathogenesis of inflammation. Immunol Rev 2007, 217:65–78.

    Article  CAS  PubMed  Google Scholar 

  3. Kweon MN, Kiyono H: Eosinophilic gastroenteritis: a problem of the mucosal immune system? Curr Allergy Asthma Rep 2003, 3:79–85.

    Article  PubMed  Google Scholar 

  4. Chehade M, Mayer L: Oral tolerance and its relation to food hypersensitivities. J Allergy Clin Immunol 2005, 115:3–12; quiz 13.

    Google Scholar 

  5. Faria AM, Weiner HL: Oral tolerance. Immunol Rev 2005, 206:232–259.

    Article  CAS  PubMed  Google Scholar 

  6. • Berin MC, Mayer L: Immunophysiology of experimental food allergy. Mucosal Immunol 2009, 2:24–32. This review nicely summarizes the immunologic features of an updated experimental food allergy model.

  7. Romagnani S: Coming back to a missing immune deviation as the main explanatory mechanism for the hygiene hypothesis. J Allergy Clin Immunol 2007, 119:1511–1513.

    Article  PubMed  Google Scholar 

  8. Wannemuehler MJ, Kiyono H, Babb JL, et al.: Lipopolysaccharide (LPS) regulation of the immune response: LPS converts germfree mice to sensitivity to oral tolerance induction. J Immunol 1982, 129:959–965.

    CAS  PubMed  Google Scholar 

  9. Iweala OI, Nagler CR: Immune privilege in the gut: the establishment and maintenance of non-responsiveness to dietary antigens and commensal flora. Immunol Rev 2006, 213:82–100.

    Article  PubMed  Google Scholar 

  10. Kiyono H, Kunisawa J, McGhee JR, et al.: The mucosal immune system. In Fundamental Immunology. Edited by Paul WE. Philadelphia, PA: Lippincott-Raven; 2008:983-1030.

  11. Yang PC, Jury J, Soderholm JD, et al.: Chronic psychological stress in rats induces intestinal sensitization to luminal antigens. Am J Pathol 2006, 168:104–114; quiz 363.

    Google Scholar 

  12. Yamaguchi N, Sugita R, Miki A, et al.: Gastrointestinal Candida colonisation promotes sensitisation against food antigens by affecting the mucosal barrier in mice. Gut 2006, 55:954–960.

    Article  CAS  PubMed  Google Scholar 

  13. •• Forbes EE, Groschwitz K, Abonia JP, et al.: IL-9- and mast cell-mediated intestinal permeability predisposes to oral antigen hypersensitivity. J Exp Med 2008, 205:897–913. This article shows that IL-9 plays a major role in the mast cell–mediated increase of epithelial permeability.

  14. Romagnani S: Regulation of the development of type 2 T-helper cells in allergy. Curr Opin Immunol 1994, 6:838–846.

    Article  CAS  PubMed  Google Scholar 

  15. Hino A, Kweon MN, Fujihashi K, et al.: Pathological role of large intestinal IL-12p40 for the induction of Th2-type allergic diarrhea. Am J Pathol 2004, 164:1327–1335.

    CAS  PubMed  Google Scholar 

  16. •• Perrigoue JG, Saenz SA, Siracusa MC, et al.: MHC class II-dependent basophil-CD4+ T cell interactions promote Th2 cytokine-dependent immunity. Nat Immunol 2009, 10: 697–705. Together with those by Yoshimoto et al. [17] and Sokol et al. [18], this study demonstrates the importance of basophils as antigen-presenting cells in the induction of allergic responses.

  17. •• Yoshimoto T, Yasuda K, Tanaka H, et al.: Basophils contribute to Th2-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4+ T cells. Nat Immunol 2009, 10:706–712. Refer annotations on reference 16.

  18. •• Sokol CL, Chu NQ, Yu S, et al.: Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat Immunol 2009, 10:713–720. Refer annotations on reference 16.

  19. Saurer L, Mueller C: T cell-mediated immunoregulation in the gastrointestinal tract. Allergy 2009, 64:505–519.

    Article  CAS  PubMed  Google Scholar 

  20. Strober W: Vitamin A rewrites the ABCs of oral tolerance. Mucosal Immunol 2008, 1:92–95.

    Article  CAS  PubMed  Google Scholar 

  21. Takayama N, Igarashi O, Kweon MN, et al.: Regulatory role of Peyer's patches for the inhibition of OVA-induced allergic diarrhea. Clin Immunol 2007, 123:199–208.

    Article  CAS  PubMed  Google Scholar 

  22. • Shreffler WG, Wanich N, Moloney M, et al.: Association of allergen-specific regulatory T cells with the onset of clinical tolerance to milk protein. J Allergy Clin Immunol 2009, 123:43–52. This article describes the clinical involvement of allergen-specific Tregs in tolerance to milk protein.

  23. Harrington LE, Hatton RD, Mangan PR, et al.: Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005, 6:1123–1132.

    Article  CAS  PubMed  Google Scholar 

  24. Park H, Li Z, Yang XO, et al.: A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005, 6:1133–1141.

    Article  CAS  PubMed  Google Scholar 

  25. Schnyder-Candrian S, Togbe D, Couillin I, et al.: Interleukin-17 is a negative regulator of established allergic asthma. J Exp Med 2006, 203:2715–2725.

    Article  CAS  PubMed  Google Scholar 

  26. •• Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, et al.: A functionally specialized population of mucosal CD103+ DCs induces FoxP3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 2007, 204:1757–1764. Together with those by Sun et al. [27] and Benson et al. [28], this study indicates that gut DCs generate retinoic acid from vitamin A, which induces de novo differentiation of Tregs and simultaneously inhibits Th17 cell induction.

  27. •• Sun CM, Hall JA, Blank RB, et al.: Small intestine lamina propria dendritic cells promote de novo generation of FoxP3 Treg cells via retinoic acid. J Exp Med 2007, 204:1775–1785. Refer annotations on reference 26.

    Article  CAS  PubMed  Google Scholar 

  28. •• Benson MJ, Pino-Lagos K, Rosemblatt M, et al.: All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J Exp Med 2007, 204:1765–1774. Refer annotations on reference 26.

    Article  CAS  PubMed  Google Scholar 

  29. •• Mucida D, Park Y, Kim G, et al.: Reciprocal Th17 and regulatory T cell differentiation mediated by retinoic acid. Science 2007, 317:256–260. Refer annotations on reference 26.

    Article  CAS  PubMed  Google Scholar 

  30. • Iliev ID, Mileti E, Matteoli G, et al.: Intestinal epithelial cells promote colitis-protective regulatory T-cell differentiation through dendritic cell conditioning. Mucosal Immunol 2009, 2:340–350. This article demonstrates immunologic cross-talk between ECs and DCs in the gut for the induction of Tregs.

  31. •• Awasthi A, Carrier Y, Peron JP, et al.: A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat Immunol 2007, 8:1380–1389. This article shows that IL-10–producing Tr1 cells are generated by IL-27.

  32. Edelman SM, Kasper DL: Symbiotic commensal bacteria direct maturation of the host immune system. Curr Opin Gastroenterol 2008, 24:720–724.

    Article  PubMed  Google Scholar 

  33. Bashir ME, Louie S, Shi HN, et al.: Toll-like receptor 4 signaling by intestinal microbes influences susceptibility to food allergy. J Immunol 2004, 172:6978–6987.

    CAS  PubMed  Google Scholar 

  34. Schnare M, Barton GM, Holt AC, et al.: Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2001, 2:947–950.

    Article  CAS  PubMed  Google Scholar 

  35. •• Maynard CL, Hatton RD, Helms WS, et al.: Contrasting roles for all-trans retinoic acid in TGF-beta-mediated induction of FoxP3 and IL10 genes in developing regulatory T cells. J Exp Med 2009, 206:343–357. This article describes the contrasting relationship between retinoic acid– and TLR-mediated stimulation in the induction of Tregs and Tr1 cells.

  36. Lee J, Gonzales-Navajas JM, Raz E: The “polarizing-tolerizing” mechanism of intestinal epithelium: its relevance to colonic homeostasis. Semin Immunopathol 2008, 30:3–9.

    Article  PubMed  Google Scholar 

  37. Cario E, Gerken G, Podolsky DK: Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 2007, 132:1359–1374.

    Article  CAS  PubMed  Google Scholar 

  38. Lee J, Mo JH, Katakura K, et al.: Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat Cell Biol 2006, 8:1327–1336.

    Article  CAS  PubMed  Google Scholar 

  39. Trebichavsky I, Rada V, Splichalova A, et al.: Cross-talk of human gut with bifidobacteria. Nutr Rev 2009, 67:77–82.

    Article  PubMed  Google Scholar 

  40. Savilahti E, Kuitunen M, Vaarala O: Pre and probiotics in the prevention and treatment of food allergy. Curr Opin Allergy Clin Immunol 2008, 8:243–248.

    Article  PubMed  Google Scholar 

  41. • Maslowski KM, Vieira AT, Ng A, et al.: Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009, 461:1282–1286. This study provides a novel cross-talk pathway among diet, intestinal microbiota, and host immune system by showing that short-chain fatty acids produced by dietary fiber by intestinal microbiota regulate gut inflammation through the interaction with G-protein-coupled receptor 43.

    Article  CAS  PubMed  Google Scholar 

  42. Ivanov II, Atarashi K, Manel N, et al.: Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009, 139:485–498.

    Article  CAS  PubMed  Google Scholar 

  43. Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, et al.: The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009, 31:677–689.

    Article  CAS  PubMed  Google Scholar 

  44. Atarashi K, Nishimura J, Shima T, et al.: ATP drives lamina propria Th17 cell differentiation. Nature 2008, 455:808–812.

    Article  CAS  PubMed  Google Scholar 

  45. Heine RG, Tang ML: Dietary approaches to the prevention of food allergy. Curr Opin Clin Nutr Metab Care 2008, 11:320–328.

    Article  CAS  PubMed  Google Scholar 

  46. Hodge L, Salome CM, Peat JK, et al.: Consumption of oily fish and childhood asthma risk. Med J Aust 1996, 164:137–140.

    CAS  PubMed  Google Scholar 

  47. Kurashima Y, Kunisawa J, Higuchi M, et al.: Sphingosine 1-phosphate-mediated trafficking of pathogenic Th2 and mast cells for the control of food allergy. J Immunol 2007, 179:1577–1585.

    CAS  PubMed  Google Scholar 

  48. Schwab SR, Cyster JG: Finding a way out: lymphocyte egress from lymphoid organs. Nat Immunol 2007, 8:1295–1301.

    Article  CAS  PubMed  Google Scholar 

  49. Kunisawa J, Kurashima Y, Gohda M, et al.: Sphingosine 1-phosphate regulates peritoneal B-cell trafficking for subsequent intestinal IgA production. Blood 2007, 109:3749–3756.

    Article  CAS  PubMed  Google Scholar 

  50. Kunisawa J, Kurashima Y, Higuchi M, et al.: Sphingosine 1-phosphate dependence in the regulation of lymphocyte trafficking to the gut epithelium. J Exp Med 2007, 204:2335–2348.

    Article  CAS  PubMed  Google Scholar 

  51. Greer FR, Sicherer SH, Burks AW: Effects of early nutritional interventions on the development of atopic disease in infants and children: the role of maternal dietary restriction, breastfeeding, timing of introduction of complementary foods, and hydrolyzed formulas. Pediatrics 2008, 121:183–191.

    Article  PubMed  Google Scholar 

  52. •• Verhasselt V, Milcent V, Cazareth J, et al.: Breast milk-mediated transfer of an antigen induces tolerance and protection from allergic asthma. Nat Med 2008, 14:170–175. This article shows the immunologic importance of breast milk in the induction of tolerance to dietary allergens in neonates.

  53. Matson AP, Zhu L, Lingenheld EG, et al.: Maternal transmission of resistance to development of allergic airway disease. J Immunol 2007, 179:1282–1291.

    CAS  PubMed  Google Scholar 

  54. Broide DH: Immunomodulation of allergic disease. Annu Rev Med 2009, 60:279–291.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kiyono.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunisawa, J., Kiyono, H. Aberrant Interaction of the Gut Immune System with Environmental Factors in the Development of Food Allergies. Curr Allergy Asthma Rep 10, 215–221 (2010). https://doi.org/10.1007/s11882-010-0097-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-010-0097-z

Keywords

Navigation