Current Allergy and Asthma Reports

, Volume 10, Issue 1, pp 39–48 | Cite as

Pathogenesis of Allergic Airway Inflammation



Advances have been made in defining the mechanisms for the control of allergic airway inflammation in response to inhaled antigens. Several genes, including ADAM33, DPP10, PHF11, GPRA, TIM-1, PDE4D, OPN3, and ORMDL3, have been implicated in the pathogenesis and susceptibility to atopy and asthma. Growing evidence associates asthma with a systemic propensity for allergic T-helper type 2 cytokines. Disordered coagulation and fibrinolysis also exacerbate asthma symptoms. Balance among functionally distinct dendritic cell subsets contributes to the outcome of T-cell-mediated immunity. Allergen-specific T-regulatory cells play a pivotal role in the development of tolerance to allergens and immune suppression. The major emphasis on immunotherapy for asthma during the past decade has been to direct the immune response to a type 1 response, or immune tolerance. In this review, we discuss the current information on the pathogenesis of allergic airway inflammation and potential immunotherapy, which could be beneficial in the treatment of airway inflammation, allergy, and asthma.


Allergic airway inflammation Asthma Asthma gene Coagulation system Cytotoxic T cell Dendritic cell Flt3 ligand KCa3.1 Matrix metalloproteinase T helper cell T regulatory cell 


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Broide DH: Molecular and cellular mechanisms of allergic disease. J Allergy Clin Immunol 2001, 108:S65–S71.CrossRefPubMedGoogle Scholar
  2. 2.
    Vignola AM, Kips J, Bousquet J: Tissue remodeling as a feature of persistent asthma. J Allergy Clin Immunol 2000, 105:1041–1053.CrossRefPubMedGoogle Scholar
  3. 3.
    Akdis MA, Trautmann S, Klunker I, et al.: T helper (Th) 2 predominance in atopic diseases is due to preferential apoptosis of circulating memory/effector Th1 cells. FASEB J 2003, 17:1026–1035.CrossRefPubMedGoogle Scholar
  4. 4.
    • Akkoc T, de Koning PJ, Ruckert B, et al.: Increased activation-induced cell death of high IFN-gamma-producing T(h)1 cells as a mechanism of T(h)2 predominance in atopic diseases. J Allergy Clin Immunol 2008, 121:652–658. This study reveals one of the mechanisms underlying the counteractive effect of Th1 and Th2 responses. CrossRefPubMedGoogle Scholar
  5. 5.
    • Louten J, Boniface K, de Waal Malefyt R: Development and function of Th17 cells in health and disease. J Allergy Clin Immunol 2009, 123:1004–1011. This article comprehensively reviews the available information on Th17 cells. CrossRefPubMedGoogle Scholar
  6. 6.
    • Veldhoen MC, Uyttenhove J, van Snick J, et al.: Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 2008, 9:1341–1346. This study demonstrates the pivotal role of TGF-β in the induction of Th9 cells. CrossRefPubMedGoogle Scholar
  7. 7.
    Feili-Hariri M, Falkner DH, Morel PA: Polarization of naive T cells into Th1 or Th2 by distinct cytokine-driven murine dendritic cell populations: implications for immunotherapy. J Leukoc Biol 2005, 78:656–664.CrossRefPubMedGoogle Scholar
  8. 8.
    Gordon JR, Li F, Nayyar A, et al.: CD8 alpha+, but not CD8 alpha-, dendritic cells tolerize Th2 responses via contact-dependent and -independent mechanisms, and reverse airway hyperresponsiveness, Th2, and eosinophil responses in a mouse model of asthma. J Immunol 2005, 175:1516–1522.PubMedGoogle Scholar
  9. 9.
    •• Shao Z, Bharadwaj AS, McGee HS, et al.: Fms-like tyrosine kinase 3 ligand increases a lung DC subset with regulatory properties in allergic airway inflammation. J Allergy Clin Immunol 2009, 123:917–924. This study reveals the mechanisms of an Flt3-L—induced therapeutic effect in allergic airway inflammation and the presence of the functional distinct lung DC subsets in the mouse lung. CrossRefPubMedGoogle Scholar
  10. 10.
    Lighvani AA, Frucht DM, Jankovic D, et al.: T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid cells. Proc Natl Acad Sci U S A 2001, 98:15137–15142.CrossRefPubMedGoogle Scholar
  11. 11.
    Furuta S, Kagami S, Tamachi T, et al.: Overlapping and distinct roles of STAT4 and T-bet in the regulation of T cell differentiation and allergic airway inflammation. J Immunol 2008, 180:6656–6662.PubMedGoogle Scholar
  12. 12.
    Djuretic IM, Levanon D, Negreanu V, et al.: Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nat Immunol 2007, 8:145–153.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhu J, Guo L, Watson CJ, et al.: Stat6 is necessary and sufficient for IL-4’s role in Th2 differentiation and cell expansion. J Immunol 2001, 166:7276–7281.PubMedGoogle Scholar
  14. 14.
    Scheinman EJ, Avni O: Transcriptional regulation of GATA3 in T helper cells by the integrated activities of transcription factors downstream of the interleukin-4 receptor and T cell receptor. J Biol Chem 2009, 284:3037–3048.CrossRefPubMedGoogle Scholar
  15. 15.
    Tamachi T, Takatori H, Fujiwara M, et al.: STAT6 inhibits T-bet-independent Th1 cell differentiation. Biochem Biophys Res Commun 2009, 382:751-755.CrossRefPubMedGoogle Scholar
  16. 16.
    Jenner RG, Townsend MJ, Jackson I, et al.: The transcription factors T-bet and GATA-3 control alternative pathways of T-cell differentiation through a shared set of target genes. Proc Natl Acad Sci U S A 2009, 106:17876–17881.CrossRefPubMedGoogle Scholar
  17. 17.
    Yang XO, Pappu BP, Nurieva R, et al.: T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 2008, 28:29–39.CrossRefPubMedGoogle Scholar
  18. 18.
    Nakano H, Yanagita M, Gunn MD: CD11c(+)B220(+)Gr-1(+) cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J Exp Med 2001, 194:1171–1178.CrossRefPubMedGoogle Scholar
  19. 19.
    de Heer HJ, Hammad H, Soullie T, et al.: Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. J Exp Med 2004, 200:89–98.CrossRefPubMedGoogle Scholar
  20. 20.
    Koya T, Matsuda H, Takeda K, et al.: IL-10-treated dendritic cells decrease airway hyperresponsiveness and airway inflammation in mice. J Allergy Clin Immunol 2007, 119:1241–1250.CrossRefPubMedGoogle Scholar
  21. 21.
    Sung SS, Fu SM, Rose CE Jr, et al.: A major lung CD103 (alphaE)-beta7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins. J Immunol 2006, 176:2161–2172.PubMedGoogle Scholar
  22. 22.
    Dunne PJ, Moran B, Cummins RC, Mills KH: CD11c + CD8{alpha} + dendritic cells promote protective immunity to respiratory infection with Bordetella pertussis. J Immunol 2009, 183:400–410.CrossRefPubMedGoogle Scholar
  23. 23.
    • Shao Z, Makinde TO, McGee HS, et al.: Flt3 ligand regulates migratory pattern and antigen uptake of lung dendritic cell subsets in a murine model of allergic airway inflammation. J Immunol 2009 (in press). This study further reveals that the mechanisms underlying the Flt3-L-mediated therapeutic effect in allergic asthma also involve regulating lung DC migration and antigen uptake. Google Scholar
  24. 24.
    Wu L, Liu YJ: Development of dendritic-cell lineages. Immunity 2007, 26:741–750.CrossRefPubMedGoogle Scholar
  25. 25.
    Demedts IK, Brusselle GG, Vermaelen KY, Pauwels RA: Identification and characterization of human pulmonary dendritic cells. Am J Respir Cell Mol Biol 2005, 32:177–184.CrossRefPubMedGoogle Scholar
  26. 26.
    Masten BJ, Olson GK, Tarleton CA, et al.: Characterization of myeloid and plasmacytoid dendritic cells in human lung. J Immunol 2006, 177:7784–7793.PubMedGoogle Scholar
  27. 27.
    • Schaumann F, Muller M, Braun A, et al.: Endotoxin augments myeloid dendritic cell influx into the airways in patients with allergic asthma. Am J Respir Crit Care Med 2008, 177:1307–1313. This study and that by Masten et al. [26] confirm the presence of DC subsets with a similar phenotype to blood DCs in the lungs. Functionally, they are actively involved in the development of allergic airway inflammation in humans. CrossRefPubMedGoogle Scholar
  28. 28.
    Bratke K, Lommatzsch M, Julius P, et al.: Dendritic cell subsets in human bronchoalveolar lavage fluid after segmental allergen challenge. Thorax 2007, 62:168–175.CrossRefPubMedGoogle Scholar
  29. 29.
    Josefowicz SZ, Rudensky A: Control of regulatory T cell lineage commitment and maintenance. Immunity 2009, 30:616–625.CrossRefPubMedGoogle Scholar
  30. 30.
    Burchill MA, Yang J, Vogtenhuber C, et al.: IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol 2007, 178:280–290.PubMedGoogle Scholar
  31. 31.
    Shevach EM, Tran DQ, Davidson TS, Andersson J: The critical contribution of TGF-beta to the induction of Foxp3 expression and regulatory T cell function. Eur J Immunol 2008, 38:915–917.CrossRefPubMedGoogle Scholar
  32. 32.
    Zheng SG, Wang JH, Stohl W, et al.: TGF-beta requires CTLA-4 early after T cell activation to induce FoxP3 and generate adaptive CD4 + CD25+ regulatory cells. J Immunol 2006, 176:3321–3329.PubMedGoogle Scholar
  33. 33.
    Kearley J, Robinson DS, Lloyd CM: CD4 + CD25+ regulatory T cells reverse established allergic airway inflammation and prevent airway remodeling. J Allergy Clin Immunol 2008, 122:617–624.CrossRefPubMedGoogle Scholar
  34. 34.
    • McGee HS, Agrawal DK: Naturally occurring and inducible T-regulatory cells modulating immune response in allergic asthma. Am J Respir Crit Care Med 2009, 180:211–225. This study demonstrated the localization of inducible Tregs to the asthmatic lungs by adoptive transfer of green fluorescence protein—expressing inducible Tregs intravenously. CrossRefPubMedGoogle Scholar
  35. 35.
    Stock P, Kallinich T, Akbari O, et al.: CD8(+) T cells regulate immune responses in a murine model of allergen-induced sensitization and airway inflammation. Eur J Immunol 2004, 34:1817–1827.CrossRefPubMedGoogle Scholar
  36. 36.
    Wells JW, Cowled CJ, Giorgini A, et al.: Regulation of allergic airway inflammation by class I-restricted allergen presentation and CD8 T-cell infiltration. J Allergy Clin Immunol 2007, 119:226–234.CrossRefPubMedGoogle Scholar
  37. 37.
    Takeda K, Dow SW, Miyahara N, et al.: Vaccine-induced CD8+ T cell-dependent suppression of airway hyperresponsiveness and inflammation. J Immunol 2009, 183:181–190.CrossRefPubMedGoogle Scholar
  38. 38.
    Isogai S, Athiviraham A, Fraser RS, et al.: Interferon-gamma-dependent inhibition of late allergic airway responses and eosinophilia by CD8+ gammadelta T cells. Immunology 2007, 122:230–238.CrossRefPubMedGoogle Scholar
  39. 39.
    Miyahara N, Takeda K, Kodama T, et al.: Contribution of antigen-primed CD8+ T cells to the development of airway hyperresponsiveness and inflammation is associated with IL-13. J Immunol 2004, 172:2549–2558.Google Scholar
  40. 40.
    Koya T, Matsuda H, Matsubara S, et al.: Differential effects of dendritic cell transfer on airway hyperresponsiveness and inflammation. Am J Respir Cell Mol Biol 2009, 41:271–280.CrossRefPubMedGoogle Scholar
  41. 41.
    Cho SH, Stanciu LA, Holgate ST, Johnston SL: Increased interleukin-4, interleukin-5, and interferon-gamma in airway CD4+ and CD8+ T cells in atopic asthma. Am J Respir Crit Care Med 2005, 171:224–230.CrossRefPubMedGoogle Scholar
  42. 42.
    Weninger W, Crowley MA, Manjunath N, von Andrian UH: Migratory properties of naive, effector, and memory CD8(+) T cells. J Exp Med 2001, 194:953–966.CrossRefPubMedGoogle Scholar
  43. 43.
    Taube C, Miyahara N, Ott V, et al.: The leukotriene B4 receptor (BLT1) is required for effector CD8+ T cell-mediated, mast cell-dependent airway hyperresponsiveness. J Immunol 2006, 176:3157–3164.PubMedGoogle Scholar
  44. 44.
    Koya T, Miyahara N, Takeda K, et al.: CD8+ T cell-mediated airway hyperresponsiveness and inflammation is dependent on CD4 + IL-4+ T cells. J Immunol 2007, 179:2787–2796.PubMedGoogle Scholar
  45. 45.
    Manavalan JS, Kim-Schulze S, Scotto L, et al.: Alloantigen specific CD8 + CD28- FoxP3+ T suppressor cells induce ILT3+ ILT4+ tolerogenic endothelial cells, inhibiting alloreactivity. Int Immunol 2004, 16:1055–1068.CrossRefPubMedGoogle Scholar
  46. 46.
    Siegmund K, Ruckert B, Ouaked N, et al.: Unique phenotype of human tonsillar and in vitro-induced FoxP3 + CD8+ T cells. J Immunol 2009, 182:2124–2130.CrossRefPubMedGoogle Scholar
  47. 47.
    Xystrakis E, Dejean AS, Bernard I, et al.: Identification of a novel natural regulatory CD8 T-cell subset and analysis of its mechanism of regulation. Blood 2004, 104:3294–3301.CrossRefPubMedGoogle Scholar
  48. 48.
    Gilliet M, Liu YJ: Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J Exp Med 2002, 195:695–704.CrossRefPubMedGoogle Scholar
  49. 49.
    Maisi P, Sorsa T, Raulo SM, et al.: Increased matrix metalloproteinase (MMP)-9 in the airway after allergen challenge. Am J Respir Crit Care Med 2001, 164:1740; discussion 1740–1741.Google Scholar
  50. 50.
    Lim DH, Cho JY, Miller M, et al.: Reduced peribronchial fibrosis in allergen-challenged MMP-9-deficient mice. Am J Physiol Lung Cell Mol Physiol 2006, 291:L265–L271.CrossRefPubMedGoogle Scholar
  51. 51.
    McMillan SJ, Kearley J, Campbell JD, et al.: Matrix metalloproteinase-9 deficiency results in enhanced allergen-induced airway inflammation. J Immunol 2004, 172:2586–2594.PubMedGoogle Scholar
  52. 52.
    Corry DB, Rishi K, Kanellis J, et al.: Decreased allergic lung inflammatory cell egression and increased susceptibility to asphyxiation in MMP2-deficiency. Nat Immunol 2002, 3:347–353.CrossRefPubMedGoogle Scholar
  53. 53.
    Page K, Ledford JR, Zhou P, Wills-Karp M: A TLR2 agonist in German cockroach frass activates MMP-9 release and is protective against allergic inflammation in mice. J Immunol 2009, 183:3400–3408.CrossRefPubMedGoogle Scholar
  54. 54.
    Warner RL, Lukacs NW, Shapiro SD, et al.: Role of metalloelastase in a model of allergic lung responses induced by cockroach allergen. Am J Pathol 2004, 165:1921–1930.PubMedGoogle Scholar
  55. 55.
    Goswami S, Angkasekwinai P, Shan M, et al.: Divergent functions for airway epithelial matrix metalloproteinase 7 and retinoic acid in experimental asthma. Nat Immunol 2009, 10:496–503.CrossRefPubMedGoogle Scholar
  56. 56.
    Sands MF, Ohtake PJ, Mahajan SD, et al.: Tissue inhibitor of metalloproteinase-1 modulates allergic lung inflammation in murine asthma. Clin Immunol 2009, 130:186–198.CrossRefPubMedGoogle Scholar
  57. 57.
    McIntire JJ, Umetsu DT, DeKruyff RH: TIM-1, a novel allergy and asthma susceptibility gene. Springer Semin Immunopathol 2004, 25:335–348.CrossRefPubMedGoogle Scholar
  58. 58.
    Van Eerdewegh P, Little RD, Dupuis J, et al.: Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 2002, 418:426–430.CrossRefPubMedGoogle Scholar
  59. 59.
    Sizing ID, Bailly V, McCoon P, et al.: Epitope-dependent effect of anti-murine TIM-1 monoclonal antibodies on T cell activity and lung immune responses. J Immunol 2007, 178:2249–2261.PubMedGoogle Scholar
  60. 60.
    Jongepier H, Boezen HM, Dijkstra A, et al.: Polymorphisms of the ADAM33 gene are associated with accelerated lung function decline in asthma. Clin Exp Allergy 2004, 34:757–760.CrossRefPubMedGoogle Scholar
  61. 61.
    Laitinen T, Polvi A, Rydman P, et al.: Characterization of a common susceptibility locus for asthma-related traits. Science 2004, 304:300–304.CrossRefPubMedGoogle Scholar
  62. 62.
    Tsai YJ, Choudhry S, Kho J, et al.: The PTGDR gene is not associated with asthma in 3 ethnically diverse populations. J Allergy Clin Immunol 2006, 118:1242–1248.CrossRefPubMedGoogle Scholar
  63. 63.
    Allen M, Heinzmann A, Noguchi E, et al.: Positional cloning of a novel gene influencing asthma from chromosome 2q14. Nat Genet 2003, 35:258-263.CrossRefPubMedGoogle Scholar
  64. 64.
    Himes BE, Hunninghake GM, Baurley JW, et al.: Genome-wide association analysis identifies PDE4D as an asthma-susceptibility gene. Am J Hum Genet 2009, 84:581–593.CrossRefPubMedGoogle Scholar
  65. 65.
    Galanter J, Choudhry S, Eng C, et al.: ORMDL3 gene is associated with asthma in three ethnically diverse populations. Am J Respir Crit Care Med 2008, 177:1194–1200.CrossRefPubMedGoogle Scholar
  66. 66.
    White JH, Chiano M, Wigglesworth M, et al.: Identification of a novel asthma susceptibility gene on chromosome 1qter and its functional evaluation. Hum Mol Genet 2008, 17:1890–1903.CrossRefPubMedGoogle Scholar
  67. 67.
    Hataji O, Taguchi O, Gabazza EC, et al.: Activation of protein C pathway in the airways. Lung 2002, 180:47–59.CrossRefPubMedGoogle Scholar
  68. 68.
    Wagers SS, Norton RJ, Rinaldi LM, et al.: Extravascular fibrin, plasminogen activator, plasminogen activator inhibitors, and airway hyperresponsiveness. J Clin Invest 2004, 114:104–111.PubMedGoogle Scholar
  69. 69.
    Tanaka A, Minoguchi K, Chen X, et al.: Activated protein C attenuates leukocyte elastase-induced lung injury in mice. Shock 2008, 30:153–158.CrossRefPubMedGoogle Scholar
  70. 70.
    Cohn L, Herrick C, Niu N, et al.: IL-4 promotes airway eosinophilia by suppressing IFN-gamma production: defining a novel role for IFN-gamma in the regulation of allergic airway inflammation. J Immunol 2001, 166:2760–2767.PubMedGoogle Scholar
  71. 71.
    Huang TJ, MacAry PA, Eynott P, et al.: Allergen-specific Th1 cells counteract efferent Th2 cell-dependent bronchial hyperresponsiveness and eosinophilic inflammation partly via IFN-gamma. J Immunol 2001, 166:207–217.PubMedGoogle Scholar
  72. 72.
    Bryan SA, O’Connor BJ, Matti S, et al.: Effects of recombinant human interleukin-12 on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 2000, 356:2149–2153.CrossRefPubMedGoogle Scholar
  73. 73.
    Wild JS, Sigounas A, Sur N, et al.: IFN-gamma-inducing factor (IL-18) increases allergic sensitization, serum IgE, Th2 cytokines, and airway eosinophilia in a mouse model of allergic asthma. J Immunol 2000, 164:2701–2710.PubMedGoogle Scholar
  74. 74.
    Ahrens B, Gruber C, Rha RD, et al.: BCG priming of dendritic cells enhances T regulatory and Th1 function and suppresses allergen-induced Th2 function in vitro and in vivo. Int Arch Allergy Immunol 2009, 150:210-220.CrossRefPubMedGoogle Scholar
  75. 75.
    Kline JN: Immunotherapy of asthma using CpG oligodeoxynucleotides. Immunol Res 2007, 39:279-286.CrossRefPubMedGoogle Scholar
  76. 76.
    Hansen G, Berry G, DeKruyff RH, Umetsu DT: Allergen-specific Th1 cells fail to counterbalance Th2 cell-induced airway hyperreactivity but cause severe airway inflammation. J Clin Invest 1999, 103:175–183.CrossRefPubMedGoogle Scholar
  77. 77.
    Randolph DA, Stephens R, Carruthers CJ, Chaplin DD: Cooperation between Th1 and Th2 cells in a murine model of eosinophilic airway inflammation. J Clin Invest 1999, 104:1021–1029.CrossRefPubMedGoogle Scholar
  78. 78.
    Stephens R, Eisenbarth SC, Chaplin DD: T helper type 1 cells in asthma: friend or foe? Curr Opin Allergy Clin Immunol 2002, 2:31–37.CrossRefPubMedGoogle Scholar
  79. 79.
    Cui J, Pazdziorko S, Miyashiro JS, et al.: Th1-mediated airway hyperresponsiveness independent of neutrophilic inflammation. J Allergy Clin Immunol 2005, 115:309–315.CrossRefPubMedGoogle Scholar
  80. 80.
    Sugimoto T, Ishikawa Y, Yoshimoto T, et al.: Interleukin 18 acts on memory T helper cells type 1 to induce airway inflammation and hyperresponsiveness in a naive host mouse. J Exp Med 2004, 199:535–545.CrossRefPubMedGoogle Scholar
  81. 81.
    Hayashi N, Yoshimoto T, Izuhara K, et al.: T helper 1 cells stimulated with ovalbumin and IL-18 induce airway hyperresponsiveness and lung fibrosis by IFN-gamma and IL-13 production. Proc Natl Acad Sci U S A 2007, 104:14765–14770.CrossRefPubMedGoogle Scholar
  82. 82.
    Kumar RK, Webb DC, Herbert C, Foster PS: Interferon-gamma as a possible target in chronic asthma. Inflamm Allergy Drug Targets 2006, 5:253–256.CrossRefPubMedGoogle Scholar
  83. 83.
    Hayashi T, Beck L, Rossetto C, et al.: Inhibition of experimental asthma by indoleamine 2,3-dioxygenase. J Clin Invest 2004, 114:270–279.PubMedGoogle Scholar
  84. 84.
    Cahalan MD, Chandy KG: The functional network of ion channels in T lymphocytes. Immunol Rev 2009, 231:59–87.CrossRefPubMedGoogle Scholar
  85. 85.
    Cruse G, Duffy SM, Brightling CE, Bradding P: Functional KCa3.1 K + channels are required for human lung mast cell migration. Thorax 2006, 61:880–885.CrossRefPubMedGoogle Scholar
  86. 86.
    Grgic I, Wulff H, Eichler I, et al.: Blockade of T-lymphocyte KCa3.1 and Kv1.3 channels as novel immunosuppression strategy to prevent kidney allograft rejection. Transplant Proc 2009, 41:2601–2606.CrossRefPubMedGoogle Scholar
  87. 87.
    Tharp DL, Bowles DK: The intermediate-conductance Ca2+ -activated K + channel (KCa3.1) in vascular disease. Cardiovasc Hematol Agents Med Chem 2009, 7:1–11.CrossRefPubMedGoogle Scholar
  88. 88.
    • Toyama K, Wulff H, Chandy KG, et al.: The intermediate-conductance calcium-activated potassium channel KCa3.1 contributes to atherogenesis in mice and humans. J Clin Invest 2008, 118:3025–3037. This study carefully tested the effect and toxicity of the KCa3.1-specific blocker TRAM-34 in a murine model and provided solid preclinical evidence for the application of TRAM-34 in treating diseases related to KCa3.1 activity. CrossRefPubMedGoogle Scholar
  89. 89.
    Shepherd MC, Duffy SM, Harris T, et al.: KCa3.1 Ca2+ activated K + channels regulate human airway smooth muscle proliferation. Am J Respir Cell Mol Biol 2007, 37:525–531.CrossRefPubMedGoogle Scholar
  90. 90.
    Edwan JH, Perry G, Talmadge JE, Agrawal DK: Flt-3 ligand reverses late allergic response and airway hyper-responsiveness in a mouse model of allergic inflammation. J Immunol 2004, 172:5016–5023.PubMedGoogle Scholar
  91. 91.
    Edwan JH, Agrawal DK: Flt3-ligand plasmid prevents the development of pathophysiological features of chronic asthma in a mouse model. Immunol Res 2007, 37:147–159.CrossRefPubMedGoogle Scholar
  92. 92.
    Bharadwaj AS, Agrawal DK: Flt3 ligand generates morphologically distinct semimature dendritic cells in ovalbumin-sensitized mice. Exp Mol Pathol 2007, 83:17–24.CrossRefPubMedGoogle Scholar
  93. 93.
    McGee HS, Edwan JH, Agrawal DK: Flt3-L increases CD4 + CD25 + Foxp3 + ICOS + cells in the lung of cockroach-sensitized and challenged mice. Am J Respir Cell Mol Biol 2009 May 15 (Epub ahead of print).Google Scholar
  94. 94.
    Idzko M, Hammad H, van Nimwegen M, et al.: Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function. J Clin Invest 2006, 116:2935–2944.CrossRefPubMedGoogle Scholar
  95. 95.
    Wolf AM, Eller K, Zeiser R, et al.: The sphingosine 1-phosphate receptor agonist FTY720 potently inhibits regulatory T cell proliferation in vitro and in vivo. J Immunol 2009, 183:3751–3760.CrossRefPubMedGoogle Scholar
  96. 96.
    Gosset P, Pichavant M, Faveeuw C, et al.: Prostaglandin D2 affects the differentiation and functions of human dendritic cells: impact on the T cell response. Eur J Immunol 2005, 35:1491–1500.CrossRefPubMedGoogle Scholar
  97. 97.
    Hammad H, Kool M, Soullie T, et al.: Activation of the D prostanoid 1 receptor suppresses asthma by modulation of lung dendritic cell function and induction of regulatory T cells. J Exp Med 2007, 204:357–367.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Center for Clinical and Translational ScienceCreighton University School of MedicineOmahaUSA

Personalised recommendations