Skip to main content

Advertisement

Log in

Fixed drug eruption: A prototypic disorder mediated by effector memory T cells

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Effector memory T cells are uniquely specialized to mediate protective immunity. However, their excessive activation may result in the development of organ-specific inflammatory diseases, which have not been extensively studied. Fixed drug eruption (FDE), a localized variant of drug-induced dermatoses characterized by relapse in the same location, is a prototypic disorder mediated by excessive activation of effector memory T cells, which are resident in the lesional epidermis. A variety of clinical and pathologic features uniquely observed in FDE lesions can be explained by the presence of CD8+ intraepidermal T cells with the effector memory phenotype in the FDE lesion. This review focuses on how these T cells are generated, retained in the epidermis, and activated to cause epidermal damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Mizukawa Y, Yamazaki Y, Teraki Y, et al.: Direct evidence for IFN-gamma production by effector-memory type intraepidermal T cells residing at an effector site of immunopathology in fixed drug eruption. Am J Pathol 2002, 161:1337–1347.

    PubMed  CAS  Google Scholar 

  2. Shiohara T, Mizukawa Y, Teraki Y: Pathophysiology of fixed drug eruption: the role of skin-resident T cells. Curr Opin Allergy Clin Immunol 2002, 2:317–323.

    Article  PubMed  Google Scholar 

  3. Korkij W, Soltani K: Fixed drug eruption. Arch Dermatol 1984, 120:520–524.

    Article  PubMed  CAS  Google Scholar 

  4. Mizukawa Y, Shiohara T: Trauma-localized fixed drug eruption: involvement of burn scars, insect bites and venipuncture sites. Dermatology 2002, 20:159–161.

    Article  Google Scholar 

  5. Guin JD, Haynie LS, Jackson D, Baker GF: Wandering fixed drug eruption: a mucocutaneous reaction to acetaminophen. J Am Acad Dermatol 1987, 17:399–402.

    Article  PubMed  CAS  Google Scholar 

  6. Shiohara T, Kokaji T: Polysensitivity in fixed drug eruption. J Am Acad Dermatol 1997, 37:1017–1018.

    PubMed  CAS  Google Scholar 

  7. Hatzis J, Noutsis K, Hatzidakis E, et al.: Fixed drug eruption in a mother and her son. Cutis 1992, 50:50–52.

    PubMed  CAS  Google Scholar 

  8. del Rio E, Guimaraens D, Aguilar A, et al.: Fixed exanthema induced by ultraviolet radiation. Dermatology 1996, 193:54–55.

    Article  PubMed  Google Scholar 

  9. Tsuruta D, Sowa J, Kobayashi H, Ishi M: Fixed food eruption caused by lactose identified after oral administration of four unrelated drugs. J Am Acad Dermatol 2005, 52:370–371.

    Article  PubMed  Google Scholar 

  10. Volz T, Berner D, Weigert C, et al.: Fixed food eruption caused by asparagus. J Allergy Clin Immunol 2005, 116:1390–1392.

    Article  PubMed  Google Scholar 

  11. Kelso JM, Keating RM: Successful desensitization for treatment of a fixed drug eruption to allopurinol. J Allergy Clin Immunol 1996, 97:1171–1172.

    Article  PubMed  CAS  Google Scholar 

  12. Shelley WB, Shelley ED: Nonpigmenting fixed drug eruption as a distinctive reaction pattern: examples caused by sensitivity to pseudoephedrine hydrochloride and tetrahydrozoline. J Am Acad Dermatol 1987, 17:403–407.

    Article  PubMed  CAS  Google Scholar 

  13. Spets AL, Strominger J, Groh-Spies V: T cell subsets in normal human epidermis. Am J Pathol 1996, 149:665–674.

    Google Scholar 

  14. Sallusto F, Lenig D, Förster R, et al.: Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999, 401:708–712.

    Article  PubMed  CAS  Google Scholar 

  15. Masopust D, Vezys V, Marzo AL, et al.: Preferential localization of effector memory cells in nonlymphoid tissue. Science 2001, 291:2413–2417.

    Article  PubMed  CAS  Google Scholar 

  16. Verjans GM, Hintzen RQ, van Dun JM, et al.: Selective retention of herpes simplex virus-specific T cells in latently infected human trigeminal ganglia. Proc Natl Acad Sci U S A 2007, 104:3496–3501.

    Article  PubMed  CAS  Google Scholar 

  17. Komatsu T, Moriya N, Shiohara T: T cell receptor (TCR) repertoire and function of human epidermal T cells: restricted TCR V alpha-V beta genes are utilized by T cells residing in the lesional epidermis in fixed drug eruption. Clin Exp Immunol 1996, 104:343–350.

    Article  PubMed  CAS  Google Scholar 

  18. Hogan RJ, Cauley LS, Ely KH, et al.: Long-term maintenance of virus-specific effector memory CD8+ T cells in the lung airways depends on proliferation. J Immunol 2002, 169:4976–4981.

    PubMed  Google Scholar 

  19. Ely KH, Roberts AD, Woodland DL: Effector memory CD8+ T cells in the lung airways retain in the potential to mediate recall responses. J Immunol 2003, 171:3338–3342.

    PubMed  CAS  Google Scholar 

  20. Wiley JA, Hogan RJ, Woodland DL, Harmsen AG: Antigen-specific CD8+ T cells persist in the upper respiratory tract following influenza virus infection. J Immunol 2001, 167:3293–3299.

    PubMed  CAS  Google Scholar 

  21. Theil D, Derfuss T, Paripovic I, et al.: Latent herpesvirus infection in human trigeminal ganglia causes chronic immune response. Am J Pathol 2003, 163:2179–2184.

    PubMed  CAS  Google Scholar 

  22. Shiohara T, Mizukawa Y: The immunological basis of lichenoid tissue reaction. Autoimmun Rev 2005, 4:236–241.

    Article  PubMed  CAS  Google Scholar 

  23. Hogan RJ, Usherwood EJ, Zhong W, et al.: Activated antigen-specific CD8+ T cells persist in the lungs following recovery from respiratory virus infections. J Immunol 2001, 166:1813–1822.

    PubMed  CAS  Google Scholar 

  24. Burrows SR, Silins SL, Khanna R, et al.: Cross-reactive memory T cells for Epstein-Barr virus augment the alloresponse to common human leukocyte antigens: degenerate recognition of major histocompatibility complex-bound peptide by T cells and its role in alloreactivity. Eur J Immunol 1997, 27:1726–1736.

    Article  PubMed  CAS  Google Scholar 

  25. Ely KH, Cookenham T, Roberts AD, Woodland DL: Memory T cell populations in the lung airways are maintained by continual recruitment. J Immunol 2006, 176:537–543.

    PubMed  CAS  Google Scholar 

  26. Teraki Y, Moriya N, Shiohara T: Drug-induced expression of intercellular adhesion molecule-1 on lesional keratinocytes in fixed drug eruption. Am J Pathol 1993, 129:1015–1019.

    CAS  Google Scholar 

  27. Ghosh S, Chackerian AA, Parker CM, et al.: The LFA-1 adhesion molecule is required for protective immunity during pulmonary Mycobacterium tuberculosis infection. J Immunol 2006, 176:4914–4922.

    PubMed  CAS  Google Scholar 

  28. Galkina E, Thatte J, Dabak V, et al.: Preferential migration of effector CD8+ T cells into the interstitium of the normal lung. J Clin Invest 2005, 115:3473–3483.

    Article  PubMed  CAS  Google Scholar 

  29. Mizukawa Y, Yamazaki Y, Shiohara T: In vivo dynamics of intraepidermal CD8+T cells and CD4+ T cells during the evolution of fixed drug eruption. Br J Dermatol 2008, 58:1230–1236.

    Article  Google Scholar 

  30. Surh CD, Boyman O, Purton JE, Sprent J: Homeostasis of memory T cells. Immunol Rev 2006, 211:154–163.

    Article  PubMed  CAS  Google Scholar 

  31. Assarsson E, Kambayashi T, Sandberg JK, et al.: CD8+ T cells rapidly acquire NK1.1 and NK cell-associated molecules upon stimulation in vitro and in vivo. J Immunol 2000, 165:3673–3679.

    PubMed  CAS  Google Scholar 

  32. Ge N, Nishioka Y, Nakamura Y, et al.: Synthesis and secretion of interleukin-15 by freshly isolated human bronchial epithelial cells. Int Arch Allergy Immunol 2004, 135:235–242.

    Article  PubMed  CAS  Google Scholar 

  33. Shen CH, Ge O, Talay O, et al.: Loss of IL-7R and IL-15R expression is associated with disappearance of memory T cells in respiratory tract following influenza infection. J Immunol 2008, 180:171–178.

    PubMed  CAS  Google Scholar 

  34. Teraki Y, Shiohara T: IFN-gamma-producing effector CD8+ T cells and IL-10-producing regulatory CD4 T cells in fixed drug eruption. J Allergy Clin Immunol 2003, 112:609–615.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiko Mizukawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizukawa, Y., Shiohara, T. Fixed drug eruption: A prototypic disorder mediated by effector memory T cells. Curr Allergy Asthma Rep 9, 71–77 (2009). https://doi.org/10.1007/s11882-009-0011-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-009-0011-8

Keywords

Navigation