Skip to main content
Log in

Upper airways reactions to cold air

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Cold air-induced rhinitis is a common complaint of individuals with chronic allergic or nonallergic rhinitis and those with no chronic nasal disease. It is characterized by rhinorrhea, nasal congestion, and nasal burning that appear within minutes of exposure to cold air and dissipate soon after exposure is terminated. The symptoms of cold-air rhinitis are reproduced experimentally with nasal cold-air provocation. This procedure has shown that nasal mast cell activation and sensory nerve stimulation are associated with the development of nasal symptoms. Sensory nerve activation generates a cholinergic reflex that leads to rhinorrhea; therefore, anticholinergic agents are highly effective in treating cold-air rhinitis. Experimental data suggest that individuals with nasal cold-air sensitivity may have reduced ability to compensate for the water loss that occurs during exposure to cold air. Therefore, the symptoms of cold air-induced rhinitis may reflect the activation of compensatory mechanisms to restore mucosal homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Baroody F, Canning B: Comparative anatomy of the nasal and tracheal/broncheal airways. In Upper and Lower Respiratory Disease. Edited by Lenfant C, Corren J, Togias A, Bousquet J. New York: Marcel Dekker; 2003:1–51.

    Google Scholar 

  2. Anderson S, Togias A: Dry air and hyperosmolar challenge in asthma and rhinitis. In Asthma and Rhinitis. Edited by Busse WW, Holgate S. Malden, MA: Blackwell Scientific Publications; 2000:1449–1468.

    Chapter  Google Scholar 

  3. Hanes L, Issa E, Proud D, et al.: Stronger nasal responsiveness to cold air in individuals with rhinitis and asthma, compared with rhinitis alone. Clin Exp Allergy 2005, 36:26–31.

    Article  Google Scholar 

  4. Silvers WS: The skier’s nose: a model of cold-induced rhinorrhea. Ann Allergy 1991, 67:32–36.

    PubMed  CAS  Google Scholar 

  5. Kauffman F, Neukirch F, Annesi I, et al.: Relation of perceived nasal and bronchial hyperresponsiveness to FEV1, basophil counts, and methacholine response. Thorax 1988, 43:456–461.

    Article  Google Scholar 

  6. Diemer F, Sanico A, Horowitz E, et al.: Non-allergenic inhalant triggers in seasonal and perennial allergic rhinitis [abstract]. J Allergy Clin Immunol 1999, 103:S2.

    Google Scholar 

  7. Rouadi P, Barooody F, Abbott D, et al.: A technique to measure the ability of the human nose to warm and humidify air. J Appl Physiol 1999, 87:400–406.

    PubMed  CAS  Google Scholar 

  8. Keck T, Leiacker R, Heinrich A, et al.: Humidity and temperature profile in the nasal cavity. Rhinology 2000, 38:167–171.

    PubMed  CAS  Google Scholar 

  9. Cauna N: Fine structure of the arteriovenous anastomosis and its nerve supply in the human nasal respiratory mucosa. Anat Rec 1970, 168:9–22.

    Article  PubMed  CAS  Google Scholar 

  10. Cauna N, Cauna D: The fine structure and innervation of the cushion veins of the human nasal respiratory mucosa. Anat Rec 1975, 181:1–16.

    Article  PubMed  CAS  Google Scholar 

  11. Pinto JM, Assanasen P, Baroody FM, et al.: Alpha-adreno-receptor blockade with phenoxybenzamine does not affect the ability of the nose to condition air. J Appl Physiol 2005, 99:128–133.

    Article  PubMed  CAS  Google Scholar 

  12. Cole P: Respiratory mucosal vascular responses, air conditioning and thermo regulation. J Laryngol Otol 1954, 68:613–622.

    PubMed  CAS  Google Scholar 

  13. Tos M: Goblet cells and glands in the nose and paranasal sinuses. In The Nose: Upper Airway Physiology and the Atmospheric Environment. Edited by Proctor DF, Andersen IB. Amsterdam: Elsevier Biomedical Press; 1982:99–144.

    Google Scholar 

  14. Ingelstedt S, Ivstam B: Study in the humidifying capacity of the nose. Acta Otolaryngol 1951, 39:286–290.

    Article  PubMed  CAS  Google Scholar 

  15. Assanasen P, Baroody F, Rouadi P, et al.: Ipratropium bromide increases the ability of the nose to warm and humidify air. Am J Respir Crit Care Med 2000, 162:1031–1037.

    PubMed  CAS  Google Scholar 

  16. Yankaskas J, Gatzy J, Boucher R: Effects of raised osmolarity on canine tracheal epithelial ion transport function. J Appl Physiol 1987, 62:2241–2245.

    PubMed  CAS  Google Scholar 

  17. Knowles M, Clark C, Fischer N, et al.: Nasal secretions: role of epithelial ion transport. In Allergic and Vasomotor rhinitis: pathophysiological aspects. Edited by Mygind N, Pipkorn U. Copenhagen: Munksgaard; 1983:77–90.

    Google Scholar 

  18. Welsh M: Electrolyte transport by airway epithelia. Physiol Rev 1987, 67:1143–1184.

    PubMed  CAS  Google Scholar 

  19. Boucher R, Chang E, Paradiso A, et al.: Chloride secretory response of cystic fibrosis human airway epithelia. J Clin Invest 1989, 84:1424–1431.

    Article  PubMed  CAS  Google Scholar 

  20. Cruz A, Naclerio R, Lichtenstein L, et al.: Further support for the role of hypertonicity on mast cell activation during nasal dry air reactions [abstract]. Clin Research 1990, 38:484A.

  21. Assanasen P, Baroody F, Abbott D, et al.: Natural and induced allergic responses increase the ability of the nose to warm and humidify air. J Allergy Clin Immunol 2000, 106:1045–1052.

    Article  PubMed  CAS  Google Scholar 

  22. Rozsasi A, Leicker R, Keck T: Nasal conditioning in perennial allergic rhinitis after nasal allergen challenge. Clin Exp Allergy 2004, 34:1099–1104.

    Article  PubMed  CAS  Google Scholar 

  23. Pinto J, Assanasen P, Baroody F, et al.: Treatment of nasal inflammation decreases the ability of subjects with asthma to condition inspired air. Am J Respir Crit Care Med 2004, 170:863–869.

    Article  PubMed  Google Scholar 

  24. Togias A, Naclerio R, Proud D, et al.: Nasal challenge with cold, dry air results in the production of inflammatory mediators: Possible mast cell involvement. J Clin Invest 1985, 76:1375–1381.

    Article  PubMed  CAS  Google Scholar 

  25. Proud D, Bailey G, Naclerio R, et al.: Typtase and histamine as markers to evaluate mast cell activation during the responses to nasal challenge with allergen, cold, dry air, and hyperosmolar solutions. J Allergy Clin Immunol 1992, 89:1098–1110.

    Article  PubMed  CAS  Google Scholar 

  26. Philip G, Jankowski R, Baroody F, et al.: Reflex activation of nasal secretion by unilateral inhalation of cold dry air. Am Rev Respir Dis 1993, 148:1616–1622.

    PubMed  CAS  Google Scholar 

  27. Cruz A, Togias A, Lichtenstein L, et al.: Local application of atropine attenuates the upper airway reaction to cold, dry air. Am Rev Resp Dis 1992, 146:340–346.

    PubMed  CAS  Google Scholar 

  28. Togias A, Proud D, Kagey-Sobotka A, et al.: The effect of a topical tricyclic antihistamine on the response of the nasal mucosa to challenge with cold, dry air and histamine. J Allergy Clin Immunol 1987, 79:599–604.

    Article  PubMed  CAS  Google Scholar 

  29. Cruz A, Togias A, Lichtenstein L, et al.: Steroid-induced reduction of histamine release does not alter the clinical nasal response to cold, dry air. Am Rev Respir Dis 1991, 143:761–765.

    PubMed  CAS  Google Scholar 

  30. van Rijswijk J, Boeke E, Keizer J, et al.: Intransal capsaicin reduces nasal hyperreactivity in idiopathic rhinitis: a double-blind randomized application regimen study. Allergy 2003, 58:754–761.

    Article  PubMed  Google Scholar 

  31. Smith C, Anderson S: Hyperosmolarity as the stimulus to asthma induced by hyperventilation? J Allergy Clin Immunol 1986, 77:729–736.

    Article  PubMed  CAS  Google Scholar 

  32. McFadden E: Hypothesis: exercise-induced asthma as a vascular phenomenon. Lancet 1990, 1:880–882.

    Article  Google Scholar 

  33. Lawrence I, Warner J, Cohan V, et al.: Purification and characterization of human skin mast cells: evidence for human mast cell heterogeneity. J Immunol 1987, 139:3062–3069.

    PubMed  CAS  Google Scholar 

  34. McKemy DD, Neuhausser WM, Julius D: Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 2002, 416:52–58.

    Article  PubMed  CAS  Google Scholar 

  35. Peier AM, Moqrich A, Hergarden AC, et al.: A TRP channel that senses cold stimuli and menthol. Cell 2002, 108:705–715.

    Article  PubMed  CAS  Google Scholar 

  36. Story GM, Peier AM, Reeve AJ, et al.: ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 2003, 112:819–829.

    Article  PubMed  CAS  Google Scholar 

  37. Reid G: ThermoTRP channels and cold sensing: what are they really up to? Pflugers Arch 2005, 451:250–263.

    Article  PubMed  CAS  Google Scholar 

  38. Kobayashi K, Fukuoka T, Obata K, et al.: Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with a-delta/c-fibers and colocalization with trk receptors. J Comp Neurol 2005, 493:596–606.

    Article  PubMed  CAS  Google Scholar 

  39. Togias A, Proud D, Kagey-Sobotka A, et al.: The osmolality of nasal secretions increases when inflammatory mediators are released in response to inhalation of cold, dry air. Am Rev Respir Dis 1988, 137:625–629.

    PubMed  CAS  Google Scholar 

  40. Eggleston P, Kagey-Sobotka A, Schleimer R, Lichtenstein LM: Interaction between hyperosmolar and IgE-mediated histamine release from basophils and mast cells. Am Rev Respir Dis 1984, 130:86–91.

    PubMed  CAS  Google Scholar 

  41. Silber G, Proud D, Warner J, et al.: In vivo release of inflammatory mediators by hypersomolar solutions. Am Rev Respir Dis 1988, 137:606–612.

    PubMed  CAS  Google Scholar 

  42. Togias A, Lykens K, Kagey-Sobotka A, et al.: Studies on the relationships between sensitivity to cold dry air, hyperosmolar solutions and histamine in the adult nose. Am Rev Respir Dis 1990, 141:1428–1433.

    PubMed  CAS  Google Scholar 

  43. Sanico AM, Philip G, Lai G, et al.: Hyperosmolar saline induces reflex nasal secretions, evincing neural hyper-responsiveness in allergic rhinitis. J Appl Physiol 1999, 86:1202–1210.

    Article  PubMed  CAS  Google Scholar 

  44. Ahern GP, Brooks IM, Miyares RL, et al.: Extracellular cations sensitize and gate capsaicin receptor TRPV1 modulating pain signaling. J Neurosci 2005, 25:5109–5116.

    Article  PubMed  CAS  Google Scholar 

  45. Caterina M, Schumachert M, Tominaga M, et al.: The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997, 389:816–824.

    Article  PubMed  CAS  Google Scholar 

  46. Baraniuk J, Ali M, Yuta A, et al.: Hypertonic saline nasal provocation stimulates nociceptive nerves, substance P release, and glandular mucous exocytosis in normal humans. Am J Respir Crit Care Med 1999, 160:655–662.

    PubMed  CAS  Google Scholar 

  47. Braat J, Mulder P, Fokkens W, et al.: Intranasal cold dry air is superior to histamine challenge in determining the presence and degree of nasal hyperreactivity in nonallergic noninfectious perennial rhinitis. Am J Respir Crit Care Med 1998, 157:1748–1755.

    PubMed  CAS  Google Scholar 

  48. Taylor-Clark T, Kollarik M, MacGlashan D, et al.: Nasal sensory nerve populations responding to histamine and capsaicin. J Allergy Clin Immunol 2005, 116:1282–1288.

    Article  PubMed  CAS  Google Scholar 

  49. Sanico AM, Koliatsos VE, Stanisz AM, et al.: Neural hyperresponsiveness and nerve growth factor in allergic rhinitis. Int Arch Allergy Immunol 1999, 118:153–158.

    Article  Google Scholar 

  50. Cruz AA, Naclerio RM, Proud D, et al.: Epithelial shedding is associated with nasal reactions to cold, dry air. J Allergy Clin Immunol 2006, 117:1351–1358.

    Article  PubMed  Google Scholar 

  51. Sahin-Yilmaz A, Pinto JM, de Tineo M, et al.: Familial aggregation of nasal conditioning capacity. J Appl Physiol 2007, 103:1078–1081.

    Article  PubMed  Google Scholar 

  52. Assanasen P, Baroody F, Naureckas E, et al.: The nasal passage of subjects with asthma has a decreased ability to warm and humidify inspired air. Am J Resp Crit Care Med 2001, 164:1640–1646.

    PubMed  CAS  Google Scholar 

  53. Heir T: Longitudinal variations in bronchial responsiveness in cross-country skiers and control subjects. Scand J Med Sci Sports 1994, 4:134–139.

    Google Scholar 

  54. Bonini S, Bonini M, Bousquet J, et al.: Rhinitis and asthma in athletes: an ARIA document in collaboration with GA2LEN. Allergy 2006, 61:681–692.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alkis Togias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruz, A.A., Togias, A. Upper airways reactions to cold air. Curr Allergy Asthma Rep 8, 111–117 (2008). https://doi.org/10.1007/s11882-008-0020-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-008-0020-z

Keywords

Navigation