Toll-like receptors in the respiratory system: Their roles in inflammation

Article

Abstract

Allergic airway inflammation develops in the context of innate immune cells that express Toll-like receptors (TLRs). TLRs recognize microbial components and evoke diverse responses in immune and other respiratory cells through distinct signaling pathways. Bacterial and viral infection in the airway modulates the extent of allergic inflammation. TLR stimulation controls T helper (Th) 1, Th2, and Th17 cell differentiation, cytokine production in mast cells, and activation of eosinophils via direct and indirect pathways. TLR signals in dendritic cells increase expression of major histocompatibility complex proteins and T-cell coreceptors, resulting in greater T-cell activation with Th1 bias. TLR signals in mast cells increase their release of IL-5, and TLR signals in airway epithelial cells enhance airway generation of proallergic cytokines. Although these responses play an important protective role in infection, they may exacerbate allergic inflammation. Under some conditions, TLR stimulation, especially via TLR9, reduces Th2-dependent allergic inflammation through induction of Th1 responses. Therefore, understanding the regulatory role of TLRs in the pathogenesis of allergic airway inflammation may shed light on improving inflammation control in asthmatic patients.

References and Recommended Reading

  1. 1.
    Chaudhuri N, Dower SK, Whyte MK, et al.: Toll-like receptors and chronic lung disease. Clin Sci (Lond) 2005, 109:125–133.CrossRefGoogle Scholar
  2. 2.
    Takeda K, Akira S: Toll-like receptors in innate immunity. Int Immunol 2005, 17:1–14.PubMedCrossRefGoogle Scholar
  3. 3.
    Trinchieri G, Sher A: Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol 2007, 7:179–190.PubMedCrossRefGoogle Scholar
  4. 4.
    Marks GB: Environmental factors and gene-environment interactions in the aetiology of asthma. Clin Exp Pharmacol Physiol 2006, 33:285–289.PubMedCrossRefGoogle Scholar
  5. 5.
    Schroder NW, Maurer M: The role of innate immunity in asthma: leads and lessons from mouse models. Allergy 2007, 62:579–590.PubMedCrossRefGoogle Scholar
  6. 6.
    Eder W, Klimecki W, Yu L, et al.: Toll-like receptor 2 as a major gene for asthma in children of European farmers. J Allergy Clin Immunol 2004, 113:482–488.PubMedCrossRefGoogle Scholar
  7. 7.
    Cockcroft DW, Davis BE: Mechanisms of airway hyperresponsiveness. J Allergy Clin Immunol 2006, 118:551–559; quiz 560–551.PubMedCrossRefGoogle Scholar
  8. 8.
    Umetsu DT, DeKruyff RH: The regulation of allergy and asthma. Immunol Rev 2006, 212:238–255.PubMedCrossRefGoogle Scholar
  9. 9.
    Voynow JA, Gendler SJ, Rose MC: Regulation of mucin genes in chronic inflammatory airway diseases. Am J Respir Cell Mol Biol 2006, 34:661–665.PubMedCrossRefGoogle Scholar
  10. 10.
    Monick MM, Powers LS, Hassan I, et al.: Respiratory syncytial virus synergizes with Th2 cytokines to induce optimal levels of TARC/CCL17. J Immunol 2007, 179:1648–1658.PubMedGoogle Scholar
  11. 11.
    Elsner J, Escher SE, Forssmann U: Chemokine receptor antagonists: a novel therapeutic approach in allergic diseases. Allergy 2004, 59:1243–1258.PubMedCrossRefGoogle Scholar
  12. 12.
    Rothenberg ME, Hogan SP: The eosinophil. Annu Rev Immunol 2006, 24:147–174.PubMedCrossRefGoogle Scholar
  13. 13.
    Hiscott J: Triggering the innate antiviral response through IRF-3 activation. J Biol Chem 2007, 282:15325–15329.PubMedCrossRefGoogle Scholar
  14. 14.
    Solis M, Goubau D, Romieu-Mourez R, et al.: Distinct functions of IRF-3 and IRF-7 in IFN-α gene regulation and control of anti-tumor activity in primary macrophages. Biochem Pharmacol 2006, 72:1469–1476.PubMedCrossRefGoogle Scholar
  15. 15.
    Sen GC, Sarkar SN: Transcriptional signaling by double-stranded RNA: role of TLR3. Cytokine Growth Factor Rev 2005, 16:1–14.PubMedCrossRefGoogle Scholar
  16. 16.
    Iwasaki A, Medzhitov R: Toll-like receptor control of the adaptive immune responses. Nat Immunol 2004, 5:987–995.PubMedCrossRefGoogle Scholar
  17. 17.
    Schnare M, Barton GM, Holt AC, et al.: Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2001, 2:947–950.PubMedCrossRefGoogle Scholar
  18. 18.
    Hollingsworth JW, Whitehead GS, Lin KL, et al.: TLR4 signaling attenuates ongoing allergic inflammation. J Immunol 2006, 176:5856–5862.PubMedGoogle Scholar
  19. 19.
    Kanzler H, Barrat FJ, Hessel EM, et al.: Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med 2007, 13:552–559.PubMedCrossRefGoogle Scholar
  20. 20.
    Revets H, Pynaert G, Grooten J, et al.: Lipoprotein I, a TLR2/4 ligand modulates Th2-driven allergic immune responses. J Immunol 2005, 174:1097–1103.PubMedGoogle Scholar
  21. 21.
    Sel S, Wegmann M, Sel S, et al.: Immunomodulatory effects of viral TLR ligands on experimental asthma depend on the additive effects of IL-12 and IL-10. J Immunol 2007, 178:7805–7813.PubMedGoogle Scholar
  22. 22.
    Redecke V, Hacker H, Datta SK, et al.: Cutting edge: activation of Toll-like receptor 2 induces a Th2 immune response and promotes experimental asthma. J Immunol 2004, 172:2739–2743.PubMedGoogle Scholar
  23. 23.
    Eisenbarth SC, Piggott DA, Huleatt JW, et al.: Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J Exp Med 2002, 196:1645–1651.PubMedCrossRefGoogle Scholar
  24. 24.
    Kim YK, Oh SY, Jeon SG, et al.: Airway exposure levels of lipopolysaccharide determine type 1 versus type 2 experimental asthma. J Immunol 2007, 178:5375–5382.PubMedGoogle Scholar
  25. 25.
    Bauer S, Hangel D, Yu P: Immunobiology of toll-like receptors in allergic disease. Immunobiology 2007, 212:521–533.PubMedCrossRefGoogle Scholar
  26. 26.
    Duez C, Gosset P, Tonnel AB: Dendritic cells and toll-like receptors in allergy and asthma. Eur J Dermatol 2006, 16:12–16.PubMedGoogle Scholar
  27. 27.
    Harrington LE, Hatton RD, Mangan PR, et al.: Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005, 6:1123–1132.PubMedCrossRefGoogle Scholar
  28. 28.
    Infante-Duarte C, Horton HF, Byrne MC, et al.: Microbial lipopeptides induce the production of IL-17 in Th cells. J Immunol 2000, 165:6107–6115.PubMedGoogle Scholar
  29. 29.
    Park H, Li Z, Yang XO, et al.: A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005, 6:1133–1141.PubMedCrossRefGoogle Scholar
  30. 30.
    Bettelli E, Carrier Y, Gao W, et al.: Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006, 441:235–238.PubMedCrossRefGoogle Scholar
  31. 31.
    Mangan PR, Harrington LE, O’Quinn DB, et al.: Transforming growth factor-beta induces development of the Th17 lineage. Nature 2006, 441:231–234.PubMedCrossRefGoogle Scholar
  32. 32.
    Ivanov, II, McKenzie BS, Zhou L, et al.: The orphan nuclear receptor ROR γt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006, 126:1121–1133.PubMedCrossRefGoogle Scholar
  33. 33.
    Veldhoen M, Hocking RJ, Atkins CJ, et al.: TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006, 24:179–189.PubMedCrossRefGoogle Scholar
  34. 34.
    Weaver CT, Harrington LE, Mangan PR, et al.: Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 2006, 24:677–688.PubMedCrossRefGoogle Scholar
  35. 35.
    Bullens DM, Truyen E, Coteur L, et al.: IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx? Respir Res 2006, 7:135.PubMedCrossRefGoogle Scholar
  36. 36.
    Schnyder-Candrian S, Togbe D, Couillin I, et al.: Interleukin-17 is a negative regulator of established allergic asthma. J Exp Med 2006, 203:2715–2725.PubMedCrossRefGoogle Scholar
  37. 37.
    Drazen JM, Arm JP, Austen KF: Sorting out the cytokines of asthma. J Exp Med 1996, 183:1–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Galli SJ, Nakae S, Tsai M: Mast cells in the development of adaptive immune responses. Nat Immunol 2005, 6:135–142.PubMedCrossRefGoogle Scholar
  39. 39.
    Kulka M, Alexopoulou L, Flavell RA, et al.: Activation of mast cells by double-stranded RNA: evidence for activation through Toll-like receptor 3. J Allergy Clin Immunol 2004, 114:174–182.PubMedCrossRefGoogle Scholar
  40. 40.
    Nigo YI, Yamashita M, Hirahara K, et al.: Regulation of allergic airway inflammation through Toll-like receptor 4-mediated modification of mast cell function. Proc Natl Acad Sci U S A 2006, 103:2286–2291.PubMedCrossRefGoogle Scholar
  41. 41.
    Qiao H, Andrade MV, Lisboa FA, et al.: FcɛR1 and toll-like receptors mediate synergistic signals to markedly augment production of inflammatory cytokines in murine mast cells. Blood 2006, 107:610–618.PubMedCrossRefGoogle Scholar
  42. 42.
    Matsushima H, Yamada N, Matsue H, et al.: TLR3-, TLR7-, and TLR9-mediated production of proinflammatory cytokines and chemokines from murine connective tissue type skin-derived mast cells but not from bone marrow-derived mast cells. J Immunol 2004, 173:531–541.PubMedGoogle Scholar
  43. 43.
    Homma T, Kato A, Hashimoto N, et al.: Corticosteroid and cytokines synergistically enhance toll-like receptor 2 expression in respiratory epithelial cells. Am J Respir Cell Mol Biol 2004, 31:463–469.PubMedCrossRefGoogle Scholar
  44. 44.
    Sha Q, Truong-Tran AQ, Plitt JR, et al.: Activation of airway epithelial cells by toll-like receptor agonists. Am J Respir Cell Mol Biol 2004, 31:358–364.PubMedCrossRefGoogle Scholar
  45. 45.
    Proud D, Chow CW: Role of viral infections in asthma and chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2006, 35:513–518.PubMedCrossRefGoogle Scholar
  46. 46.
    Matsukura S, Kokubu F, Kurokawa M, et al.: Synthetic double-stranded RNA induces multiple genes related to inflammation through Toll-like receptor 3 depending on NF-B and/or IRF-3 in airway epithelial cells. Clin Exp Allergy 2006, 36:1049–1062.PubMedCrossRefGoogle Scholar
  47. 47.
    Liu YJ: Thymic stromal lymphopoietin: master switch for allergic inflammation. J Exp Med 2006, 203:269–273.PubMedCrossRefGoogle Scholar
  48. 48.
    Ziegler SF, Liu YJ: Thymic stromal lymphopoietin in normal and pathogenic T cell development and function. Nat Immunol 2006, 7:709–714.PubMedCrossRefGoogle Scholar
  49. 49.
    Kato A, Favoreto S Jr, Avila PC, et al.: TLR3-and Th2 cytokine-dependent production of thymic stromal lymphopoietin in human airway epithelial cells. J Immunol 2007, 179:1080–1087.PubMedGoogle Scholar
  50. 50.
    Wong CK, Cheung PF, Ip WK, et al.: Intracellular signaling mechanisms regulating toll-like receptor-mediated activation of eosinophils. Am J Respir Cell Mol Biol 2007, 37:85–96.PubMedCrossRefGoogle Scholar
  51. 51.
    Didierlaurent A, Ferrero I, Otten LA, et al.: Flagellin promotes myeloid differentiation factor 88-dependent development of Th2-type response. J Immunol 2004, 172:6922–6930.PubMedGoogle Scholar
  52. 52.
    Hayashi T, Raz E: TLR9-based immunotherapy for allergic disease. Am J Med 2006, 119:897.e1-6.PubMedCrossRefGoogle Scholar
  53. 53.
    Hessel EM, Chu M, Lizcano JO, et al.: Immunostimulatory oligonucleotides block allergic airway inflammation by inhibiting Th2 cell activation and IgE-mediated cytokine induction. J Exp Med 2005, 202:1563–1573.PubMedCrossRefGoogle Scholar
  54. 54.
    Tulic MK, Fiset PO, Christodoulopoulos P, et al.: Amb a 1-immunostimulatory oligodeoxynucleotide conjugate immunotherapy decreases the nasal inflammatory response. J Allergy Clin Immunol 2004, 113:235–241.PubMedCrossRefGoogle Scholar
  55. 55.
    Simons FE, Shikishima Y, Van Nest G, et al.: Selective immune redirection in humans with ragweed allergy by injecting Amb a 1 linked to immunostimulatory DNA. J Allergy Clin Immunol 2004, 113:1144–1151.PubMedCrossRefGoogle Scholar
  56. 56.
    O’sullivan SM: Asthma death, CD8+ T cells, and viruses. Proc Am Thorac Soc 2005, 2:162–165.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Immunology (H3), Graduate School of MedicineChiba UniversityChibaJapan

Personalised recommendations