Advertisement

Current Allergy and Asthma Reports

, Volume 7, Issue 3, pp 231–236 | Cite as

Building better mouse models of asthma

  • Clare M. LloydEmail author
Article

Abstract

Allergic asthma is a complex disease that has been modeled extensively in small rodents. Airway eosinophilia and changes in lung function have been documented using a variety of protocols. However, recent efforts have improved these models by trying to replicate the structural remodeling that occurs in the lung as a consequence of chronic allergen-driven inflammation. This review documents the recent developments in protocols and systems designed to examine pathways leading to allergen-induced airway remodeling.

Keywords

Asthma Respir Crit Methacholine House Dust Mite Allergen Challenge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Lloyd CM, Gonzalo JA, Coyle AJ, Gutierrez-Ramos JC: Mouse models of allergic airway disease. Adv Immunol 2001, 77: 263–295.PubMedCrossRefGoogle Scholar
  2. 2.
    Elias J: The relationship between asthma and COPD: lessons from transgenic mice. Chest 2004, 126: 111S–116S.PubMedCrossRefGoogle Scholar
  3. 3.
    Lee JJ, McGarry MP, Farmer SC, et al.: Interleukin-5 expression in the lung epithelium of transgenic mice leads to pulmonary changes pathognomonic of asthma. J Exp Med 1997, 185: 2143–2156.PubMedCrossRefGoogle Scholar
  4. 4.
    Zhu Z, Homer RJ, Wang Z, et al.: Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 1999, 103: 779–788.PubMedCrossRefGoogle Scholar
  5. 5.
    Temann UA, Geba GP, Rankin JA, Flavell RA: Expression of interleukin 9 in the lungs of transgenic mice causes airway inflammation, mast cell hyperplasia, and bronchial hyperresponsiveness. J Exp Med 1998, 188: 1307–1320.PubMedCrossRefGoogle Scholar
  6. 6.
    Tang W, Geba GP, Zheng T, et al.: Targeted expression of IL-11 in the murine airway causes lymphocytic inflammation, bronchial remodeling, and airways obstruction. J Clin Invest 1996, 98: 2845–2853.PubMedCrossRefGoogle Scholar
  7. 7.
    Ray P, Tang W, Wang P, et al.: Regulated overexpression of interleukin 11 in the lung. Use to dissociate development-dependent and-independent phenotypes. J Clin Invest 1997, 100: 2501–2511.PubMedCrossRefGoogle Scholar
  8. 8.
    Lee CG, Link H, Baluk P, et al.: Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nat Med 2004, 10: 1095–1103.PubMedCrossRefGoogle Scholar
  9. 9.
    Zhu Z, Zheng T, Lee CG, et al.: Tetracycline-controlled transcriptional regulation systems: advances and application in transgenic animal modeling. Semin Cell Dev Biol 2002, 13: 121–128.PubMedCrossRefGoogle Scholar
  10. 10.
    Lee CG, Kang HR, Homer RJ, et al.: Transgenic modeling of transforming growth factor-1: role of apoptosis in fibrosis and alveolar remodeling. Proc Am Thorac Soc 2006, 3: 418–423.PubMedCrossRefGoogle Scholar
  11. 11.
    Finotto S, Neurath MF, Glickman JN, et al.: Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet. Science 2002, 295: 336–338.PubMedCrossRefGoogle Scholar
  12. 12.
    Temelkovski J, Hogan SP, Shepherd DP, et al.: An improved murine model of asthma: selective airway inflammation, epithelial lesions and increased methacholine responsiveness following chronic exposure to aerosolised allergen. Thorax 1998, 53: 849–856.PubMedCrossRefGoogle Scholar
  13. 13.
    McMillan S, Lloyd C: Prolonged allergen challenge in mice leads to persistent airway remodeling. Clin Exp Allergy 2004, 34: 497–507.PubMedCrossRefGoogle Scholar
  14. 14.
    Henderson WRJ, Tang LO, Chu SJ, et al.: A role for cysteinyl leukotrienes in airway remodeling in a mouse asthma model. Am J Respir Crit Care Med 2002, 165: 108–116.PubMedGoogle Scholar
  15. 15.
    Leigh R, Ellis R, Wattie J, et al.: Dysfunction and remodeling of the mouse airway persist after resolution of acute allergen-induced airway inflammation. Am J Respir Cell Mol Biol 2002, 27: 526–535.PubMedGoogle Scholar
  16. 16.
    Cho JY, Miller M, Baek KJ, et al.: Inhibition of airway remodeling in IL-5-deficient mice. J Clin Invest 2004, 113: 551–560.PubMedGoogle Scholar
  17. 17.
    Kumar RK, Herbert C, Yang M, et al.: Role of interleukin-13 in eosinophil accumulation and airway remodeling in a mouse model of chronic asthma. Clin Exp Allergy 2002, 32: 1104–1111.PubMedCrossRefGoogle Scholar
  18. 18.
    Foster PS, Webb DC, Yang M, et al.: Dissociation of T helper type 2 cytokine-dependent airway lesions from signal transducer and activator of transcription 6 signalling in experimental chronic asthma. Clin Exp Allergy 2003, 33: 688–695.PubMedCrossRefGoogle Scholar
  19. 19.
    Yang G, Li L, Volk A, et al.: Therapeutic dosing with anti-interleukin-13 monoclonal antibody inhibits asthma progression in mice. J Pharmacol Exp Ther 2005, 313: 8–15.PubMedCrossRefGoogle Scholar
  20. 20.
    Kumar RK, Herbert C, Webb DC, et al.: Effects of anticytokine therapy in a mouse model of chronic asthma. Am J Respir Crit Care Med 2004, 170: 1043–1048.PubMedCrossRefGoogle Scholar
  21. 21.
    Humbles AA, Lloyd CM, McMillan SJ, et al.: A critical role for eosinophils in allergic airways remodeling. Science 2004, 305: 1776–1779.PubMedCrossRefGoogle Scholar
  22. 22.
    Ikeda RK, Miller M, Nayar J, et al.: Accumulation of peribronchial mast cells in a mouse model of ovalbumin allergen induced chronic airway inflammation: modulation by immunostimulatory DNA sequences. J Immunol 2003, 171: 4860–4867.PubMedGoogle Scholar
  23. 23.
    Kumar RK, Herbert C, Kasper M: Reversibility of airway inflammation and remodeling following cessation of antigenic challenge in a model of chronic asthma. Clin Exp Allergy 2004, 34: 1796–1802.PubMedCrossRefGoogle Scholar
  24. 24.
    Wegmann M, Fehrenbach H, Fehrenbach A, et al.: Involvement of distal airways in a chronic model of experimental asthma. Clin Expl Allergy 2005, 35: 1263–1274.CrossRefGoogle Scholar
  25. 25.
    Henderson WRJr, Lewis DD, Albert RK, et al.: The importance of leukotrienes in airway inflammation in a mouse model of asthma. J Exp Med 1996, 184: 1483–1494.PubMedCrossRefGoogle Scholar
  26. 26.
    Tanaka H, Masuda T, Tokuoka S, et al.: The effect of allergen-induced airway inflammation on airway remodeling in a murine model of allergic asthma. Inflamm Res 2001, 50: 616–624.PubMedCrossRefGoogle Scholar
  27. 27.
    Johnson JR, Wiley RE, Fattouh R, et al.: Continuous exposure to house dust mite elicits chronic airway inflammation and structural remodeling. Am J Respir Crit Care Med 2004, 169: 378–385.PubMedCrossRefGoogle Scholar
  28. 28.
    Leigh R, Ellis R, Wattie JN, et al.: Type 2 cytokines in the pathogenesis of sustained airway dysfunction and airway remodeling in mice. Am J Respir Crit Care Med 2004, 169: 860–867.PubMedCrossRefGoogle Scholar
  29. 29.
    Masuda T, Tanaka H, Komai M, et al.: Mast cells play a partial role in allergen-induced subepithelial fibrosis in a murine model of allergic asthma. Clin Exp Allergy 2003, 33: 705–713.PubMedCrossRefGoogle Scholar
  30. 30.
    McMillan SJ, Xanthou G, Lloyd CM: Manipulation of allergen-induced airway remodeling by treatment with anti-TGF-β antibody: effect on the SMAD signaling pathway. J Immunol 2005, 174: 5774–5780.PubMedGoogle Scholar
  31. 31.
    Broide DH, Lawrence T, Doherty T, et al.: Allergen-induced peribronchial fibrosis and mucus production mediated by I B kinase beta-dependent genes in airway epithelium. Proc Natl Acad Sci U S A 2005, 102: 17723–17728.PubMedCrossRefGoogle Scholar
  32. 32.
    McMillan SJ, Xanthou G, Lloyd CM: Therapeutic administration of Budesonide ameliorates allergen-induced airway remodeling. Clin Exp Allergy 2005, 35: 388–396.PubMedCrossRefGoogle Scholar
  33. 33.
    McMenamin C, Holt PG: The natural immune response to inhaled soluble protein antigens involves major histocompatibility complex (MHC) class I-restricted CD8+ T cell-mediated but MHC class II-restricted CD4+ T cell-dependent immune deviation resulting in selective suppression of immunoglobulin E production. J Exp Med 1993, 178: 889–899.PubMedCrossRefGoogle Scholar
  34. 34.
    McMenamin C, Pimm C, McKersey M, Holt PG: Regulation of IgE responses to inhaled antigen in mice by antigen-specific gamma delta T cells. Science 1994, 265: 1869–1871.PubMedCrossRefGoogle Scholar
  35. 35.
    van Halteren AG, van der Cammen MJ, Cooper D, et al.: Regulation of antigen-specific IgE, IgG1, and mast cell responses to ingested allergen by mucosal tolerance induction. J Immunol 1997, 159: 3009–3015.PubMedGoogle Scholar
  36. 36.
    Stampfli MR, Wiley RE, Neigh GS, et al.: GM-CSF transgene expression in the airway allows aerosolized ovalbumin to induce allergic sensitization in mice. J Clin Invest 1998, 102: 1704–1714.PubMedCrossRefGoogle Scholar
  37. 37.
    Shinagawa K, Kojima M: Mouse model of airway remodeling: strain differences. Am J Respir Crit Care Med 2003, 168: 959–967.PubMedCrossRefGoogle Scholar
  38. 38.
    Cates EC, Fattouh R, Wattie J, et al.: Intranasal exposure of mice to house dust mite elicits allergic airway inflammation via a GM-CSF-mediated mechanism. J Immunol 2004, 173: 6384–6392.PubMedGoogle Scholar
  39. 39.
    Fattouh R, Pouladi MA, Alvarez D, et al.: House dust mite facilitates ovalbumin-specific allergic sensitization and airway inflammation. Am J Respir Crit Care Med 2005, 172: 314–321.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group, LLC 2007

Authors and Affiliations

  1. 1.Leukocyte Biology Section, National Heart and Lung Institute, Faculty of MedicineImperial CollegeLondonEngland

Personalised recommendations