Skip to main content

Advertisement

Log in

Immunodeficiency in childhood

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Primary immunodeficiency disorders (PIDs) continue to illuminate mechanisms of human immunity and hypersensitivity. New discoveries in common variable immunodeficiency, the most enigmatic of PID syndromes, reveal molecular pathways of importance in human antibody production. FOXP3 mutations demonstrate the essential role that T-regulatory cells play in controlling autoantibody formation and disease. Interleukin-1 receptor-associated kinase 4 deficiency emphasizes the key role that innate immunity plays in the defense of bacterial disease occurring early in life. With respect to therapy, subcutaneous immunoglobulin treatment may indeed be a better treatment than intravenous immunoglobulin for many patients with antibody deficiency. Finally, PIDs remain in the vanguard for the treatment of inherited disorders by gene therapy. Gene therapy has cured patients with chronic granulomatous disease and severe combined immunode ficiency, but not without morbidity and mortality. Into the 21st century, PIDs continue to instruct us in human health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Notarangelo L, Casanova JL, Conley ME, et al.: Primary immunodeficiency diseases: an update from the International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee Meeting in Budapest, 2005. J Allergy Clin Immunol 2006, 117:883–896.

    Article  PubMed  Google Scholar 

  2. Gatti RA, Meuwissen HJ, Allen HD, et al.: Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet 1968, 28:1366–1369.

    Article  Google Scholar 

  3. Knight AK, Cunningham-Rundles C: Inflammatory and autoimmune complications of common variable immune deficiency. Autoimmunol Rev 2006, 5:156–159.

    Article  CAS  Google Scholar 

  4. Vorechovsky I, Cullen M, Carrington M, et al.: Fine mapping of IGAD1 in IgA deficiency and common variable immunodeficiency: identification and characterization of haplotypes shared by affected members of 101 multiple-case families. J Immunol 2000, 164:4408–4416.

    PubMed  CAS  Google Scholar 

  5. Grimbacher B, Warnatz K, Peter HH: The immunological synapse for B-cell memory: the role of the ICOS and its ligand for the longevity of humoral immunity. Curr Opin Allergy Clin Immunol 2003, 3:409–419.

    Article  PubMed  CAS  Google Scholar 

  6. Hutloff A, Dittrich AM, Beier KC, et al.: ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 1999, 397:263–266.

    Article  PubMed  CAS  Google Scholar 

  7. Grimbacher B, Hutloff A, Schlesier M, et al.: Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat Immunol 2003, 4:261–268.

    Article  PubMed  CAS  Google Scholar 

  8. Wu Y, Bressette D, Carrell JA, et al.: Tumor necrosis factor (TNF) receptor superfamily member TACI is a high affinity receptor for TNF family members APRIL and BLyS. J Biol Chem 2000, 275:35478–35485.

    Article  PubMed  CAS  Google Scholar 

  9. Seshasayee D, Valdez P, Yan M, et al.: Loss of TACI causes fatal lymphoproliferation and autoimmunity, establishing TACI as an inhibitory BLyS receptor. Immunity 2003, 18:279–288.

    Article  PubMed  CAS  Google Scholar 

  10. Castigli E, Wilson SA, Garibyan L, et al.: TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet 2005, 37:829–834. This paper and Salzer et al. [11] identified TACI as a significant molecule in human B-cell biology. Its absence accounts for 5% to 10% of CVID cases.

    Article  PubMed  CAS  Google Scholar 

  11. Salzer U, Chapel HM, Webster AD, et al.: Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat Genet 2005 37:820–828.

    Article  PubMed  CAS  Google Scholar 

  12. van Zelm MC, Reisli I, van der BM, et al.: An antibodyde ficiency syndrome due to mutations in the CD19 gene. N Engl J Med 2006, 354:1901–1912.

    Article  PubMed  Google Scholar 

  13. Farrington M, Grosmaire LS, Nonoyama S, et al.: CD40 ligand expression is defective in a subset of patients with common variable immunodeficiency. Proc Natl Acad Sci U S A 1994 91:1099–1103.

    Article  PubMed  CAS  Google Scholar 

  14. Kanegane H, Tsukada S, Iwata T, et al.: Detection of Bruton’s tyrosine kinase mutations in hypogammaglobulinaemic males registered as common variable immunodeficiency (CVID) in the Japanese Immunodeficiency Registry. Clin Exp Immunol 2000, 120:512–517.

    Article  PubMed  CAS  Google Scholar 

  15. Morra M, Silander O, Calpe S, et al.: Alterations of the X-linked lymphoproliferative disease gene SH2D1A in common variable immunodeficiency syndrome. Blood 2001, 98:1321–1325.

    Article  PubMed  CAS  Google Scholar 

  16. Spickett GP, Farrant J, North ME, et al.: Common variable immunodeficiency: How many diseases? Immunol Today 1997, 18:325–328.

    Article  PubMed  CAS  Google Scholar 

  17. Powell BR, Buist NR, Stenzel P: An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J Pediatr 1982, 100:731–737.

    Article  PubMed  CAS  Google Scholar 

  18. Chatila TA: Role of regulatory T cells in human diseases. J Allergy Clin Immunol 2005, 116:949–959.

    Article  PubMed  CAS  Google Scholar 

  19. Baud O, Goulet O, Canioni D, et al.: Treatment of the immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) by allogeneic bone marrow transplantation. N Engl J Med 2001, 344:1758–1762.

    Article  PubMed  CAS  Google Scholar 

  20. Lin W, Truong N, Grossman WJ, et al.: Allergic dysregulation and hyperimmunoglobulinemia E in Foxp3 mutant mice. J Allergy Clin Immunol 2005, 116:1106–1115.

    Article  PubMed  CAS  Google Scholar 

  21. Chatila TA, Blaeser F, Ho N, et al.: JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J Clin Invest 2000, 106:R75-R81.

    Article  PubMed  CAS  Google Scholar 

  22. Brunkow ME, Jeffery EW, Hjerrild KA, et al.: Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001, 27:68–73.

    Article  PubMed  CAS  Google Scholar 

  23. Fontenot JD, Gavin MA, Rudensky AY: Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003, 4:330–336.

    Article  PubMed  CAS  Google Scholar 

  24. Hori S, Nomura T, Sakaguchi S: Control of regulatory T cell development by the transcription factor Foxp3. Science 2003, 299:1057–1061.

    Article  PubMed  CAS  Google Scholar 

  25. Bettelli E, Dastrange M, Oukka M: Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc Natl Acad Sci U S A 2005, 102:5138–5143.

    Article  PubMed  CAS  Google Scholar 

  26. Bennett CL, Brunkow ME, Ramsdell F, et al.: A rare polyadenylation signal mutation of the FOXP3 gene (AAUAAA-->AAUGAA) leads to the IPEX syndrome. Immunogenetics 2001, 53:435–439.

    Article  PubMed  CAS  Google Scholar 

  27. Owen CJ, Jennings CE, Imrie H, et al.: Mutational analysis of the FOXP3 gene and evidence for genetic heterogeneity in the immunodysregulation, polyendocrinopathy, enteropathy syndrome. J Clin Endocrinol Metab 2003, 88:6034–6039.

    Article  PubMed  CAS  Google Scholar 

  28. Ku CL, Yang K, Bustamante J, et al.: Inherited disorders of human Toll-like receptor signaling: immunological implications. Immunol Rev 2005, 203:10–20.

    Article  PubMed  CAS  Google Scholar 

  29. Courtois G, Smahi A, Reichenbach J, et al.: A hypermorphic IkappaBalpha mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. J Clin Invest 2003, 112:1108–1115.

    Article  PubMed  CAS  Google Scholar 

  30. Picard C, Puel A, Bonnet M, et al.: Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 2003, 299:2076–2079.

    Article  PubMed  CAS  Google Scholar 

  31. Puel A, Yang K, Ku CL, et al.: Heritable defects of the human TLR signalling pathways. J Endotoxin Res 2005, 11:220–2204.

    Article  PubMed  CAS  Google Scholar 

  32. Puel A, Picard C, Ku CL, et al.: Inherited disorders of NFkappaB-mediated immunity in man. Curr Opin Immunol 2004, 16:34–41.

    Article  PubMed  CAS  Google Scholar 

  33. Yang K, Puel A, Zhang S, et al.: Human TLR-7-, -8-, and -9-mediated induction of IFN-alpha/beta and -lambda Is IRAK-4 dependent and redundant for protective immunity to viruses. Immunity 2005, 23:465–478.

    Article  PubMed  CAS  Google Scholar 

  34. Bruton OC: Agammaglobulinemia. Pediatrics 1952, 9:722–728.

    PubMed  CAS  Google Scholar 

  35. Gardulf A, Hammarstrom L, Smith CI: Home treatment of hypogammaglobulinaemia with subcutaneous gammaglobulin by rapid infusion. Lancet 1991, 338:162–166.

    Article  PubMed  CAS  Google Scholar 

  36. Gardulf A, Andersen V, Bjorkander J, et al.: Subcutaneous immunoglobulin replacement in patients with primary antibody deficiencies: safety and costs. Lancet 1995, 345:365–369.

    Article  PubMed  CAS  Google Scholar 

  37. Ochs HD, Gupta S, Kiessling P, et al.: Safety and efficacy of self-administered subcutaneous immunoglobulin in patients with primary immunodeficiency diseases. J Clin Immunol 2006, 26:265–273. This paper and the next demonstrate the efficacy of a commercial immunoglobulin preparation designed specifically for subcutaneous administration.

    Article  PubMed  CAS  Google Scholar 

  38. Chapel HM, Spickett GP, Ericson D, et al.: The comparison of the efficacy and safety of intravenous versus subcutaneous immunoglobulin replacement therapy. J Clin Immunol 2000, 20:94–100.

    Article  PubMed  CAS  Google Scholar 

  39. Gardulf A, Nicolay U, Asensio O, et al.: Rapid subcutaneous IgG replacement therapy is effective and safe in children and adults with primary immunodeficiencies—a prospective, multi-national study. J Clin Immunol 2006, 26:177–185.

    Article  PubMed  CAS  Google Scholar 

  40. Kittner JM, Grimbacher B, Wulff W, et al.: Patients’ attitude to subcutaneous immunoglobulin substitution as home therapy. J Clin Immunol 2006, 26:400–405.

    Article  PubMed  CAS  Google Scholar 

  41. Nicolay U, Kiessling P, Berger M, et al.: Health-related quality of life and treatment satisfaction in North American patients with primary immunodeficiency diseases receiving subcutaneous IgG self-infusions at home. J Clin Immunol 2006, 26:65–72.

    Article  PubMed  CAS  Google Scholar 

  42. Hershfield MS, Buckley RH, Greenberg ML, et al.: Treatment of adenosine deaminase deficiency with polyethylene glycol-modified adenosine deaminase. N Engl J Med 1987, 316:589–596.

    Article  PubMed  CAS  Google Scholar 

  43. Hacein-Bey-Abina S, le Deist F, Carlier F, et al.: Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 2002, 346:1185–1193. This paper documents the first curative human gene therapy.

    Article  PubMed  CAS  Google Scholar 

  44. Hacein-Bey-Abina S, Von KC, Schmidt M, et al.: LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003, 302:415–419.

    Article  PubMed  CAS  Google Scholar 

  45. Woods NB, Bottero V, Schmidt M, et al.: Gene therapy: therapeutic gene causing lymphoma. Nature 2006, 440:1123.

    Article  PubMed  CAS  Google Scholar 

  46. Aiuti A, Slavin S, Aker M, et al.: Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 2002, 296:2410–2413. In this experiment, the authors stopped ADA enzyme replacement, which gave a selective advantage to the transfected HSCs and allowed immune reconstitution.

    Article  PubMed  CAS  Google Scholar 

  47. Ott MG, Schmidt M, Schwarzwaelder K, et al.: Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 2006, 12:401–409.

    Article  PubMed  CAS  Google Scholar 

  48. Sinn PL, Sauter SL, McCray PB Jr: Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors—design, biosafety, and production. Gene Ther 2005, 12:1089–1098.

    Article  PubMed  CAS  Google Scholar 

  49. Adjali O, Marodon G, Steinberg M, et al.: In vivo correction of ZAP-70 immunodeficiency by intrathymic gene transfer. J Clin Invest 2005, 115:2287–2295.

    Article  PubMed  CAS  Google Scholar 

  50. Urnov FD, Miller JC, Lee YL, et al.: Highly efficient endogenous human gene correction using designed zincfinger nucleases. Nature 2005, 435:646–651. This paper describes a method for direct repair of a defective gene that avoids the problems associated with gene insertions.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Bastian MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernandez, M., Bastian, J.F. Immunodeficiency in childhood. Curr Allergy Asthma Rep 6, 468–474 (2006). https://doi.org/10.1007/s11882-006-0023-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-006-0023-6

Keywords

Navigation