Skip to main content

Advertisement

Log in

New chemokine targets for asthma therapy

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Chemokines and chemokine receptors are part of a complex network of molecules that play a key role in leukocyte migration and activation. The chemokine family role is crucial in the immune system, orchestrating innate and acquired immune responses, but also in allergic inflammation. A subset of chemokines, including CCL11, CCL24, CCL26, CCL7, CCL13, CCL17, and CCL22 is highly expressed by the three main cell types involved in allergic inflammation: eosinophils, basophils, and Th2 lymphocytes. In vitro and in vivo experimental studies in murine models of asthma as well as evidence from patients with asthma confirm the role of these chemokines and their receptors, including CCR3, CCR4, and CCR8, establishing a subset of chemokine/chemokine receptor that is potentially important in allergic inflammation. Recent data support the concept that interfering with chemokines or chemokine receptors represents a new approach in allergy therapy. However, even if some of them have been shown to be effective in animal models, none is as yet used in human patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Hartert TV, Peebles RS Jr: Epidemiology of asthma: the year in review. Curr Opin Pulm Med 2000, 6:4–9.

    Article  PubMed  CAS  Google Scholar 

  2. Busse WW: Mechanisms and advances in allergic diseases. J Allergy Clin Immunol 2000, 105:S593-S598.

    Article  PubMed  CAS  Google Scholar 

  3. Rossi D, Zlotnik A: The biology of chemokines and their receptors. Annu Rev Immunol 2000, 18:217–242.

    Article  PubMed  CAS  Google Scholar 

  4. Zlotnik A, Yoshie O: Chemokines: a new classification system and their role in immunity. Immunity 2000, 12:121–127.

    Article  PubMed  CAS  Google Scholar 

  5. Loetscher P, Pellegrino A, Gong JH, et al.: The ligands of CXC chemokine receptor 3, I-TAC, Mig, and IP10, are natural antagonists for CCR3. J Biol Chem 2001, 276:2986–2991. This study describes a new mechanism for the regulation of leukocyte recruitment based on the combination of agonistic and antagonistic effects.

    Article  PubMed  CAS  Google Scholar 

  6. Loetscher P, Clark-Lewis I: Agonistic and antagonistic activities of chemokines. J Leukoc Biol 2001, 69:881–884.

    PubMed  CAS  Google Scholar 

  7. Ogilvie P, Bardi G, Clark-Lewis I, et al.: Eotaxin is a natural antagonist for CCR2 and an agonist for CCR5. Blood 2001, 97:1920–1924.

    Article  PubMed  CAS  Google Scholar 

  8. Power CA, Church DJ, Meyer A, et al.: Cloning and characterization of a specific receptor for the novel CC chemokine MIP-3alpha from lung dendritic cells. J Exp Med 1997, 186:825–835.

    Article  PubMed  CAS  Google Scholar 

  9. Sozzani S, Allavena P, Vecchi A, Mantovani A: Chemokines and dendritic cell traffic. J Clin Immunol 2000, 20:151–160.

    Article  PubMed  CAS  Google Scholar 

  10. Forster R, Schubel A, Breitfeld D, et al.: CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 1999, 99:23–33.

    Article  PubMed  CAS  Google Scholar 

  11. Varona R, Villares R, Carramolino L, et al.: CCR6-deficient mice have impaired leukocyte homeostasis and altered contact hypersensitivity and delayed-type hypersensitivity responses. J Clin Invest 2001, 107:R37-R45.

    PubMed  CAS  Google Scholar 

  12. Cook DN, Prosser DM, Forster R, et al.: CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunity 2000, 12:495–503.

    Article  PubMed  CAS  Google Scholar 

  13. Lukacs NW, Prosser DM, Wiekowski M, et al.: Requirement for the chemokine receptor CCR6 in allergic pulmonary inflammation. J Exp Med 2001, 194:551–555.

    Article  PubMed  CAS  Google Scholar 

  14. Hammad H, Lambrecht BN, Pochard P, et al.: Monocytederived dendritic cells induce a house dust mite-specific Th2 allergic inflammation in the lung of humanized SCID mice: involvement of CCR7. J Immunol 2002, 169:1524–1534. This mouse model will allow testing of new therapeutic strategies interfering with airway DCs.

    PubMed  CAS  Google Scholar 

  15. Upham JW, Stumbles PA: Why are dendritic cells important in allergic diseases of the respiratory tract? Pharmacol Ther 2003, 100:75–87.

    Article  PubMed  CAS  Google Scholar 

  16. Fujisawa T, Kato Y, Nagase H, et al.: Chemokines induce eosinophil degranulation through CCR-3. J Allergy Clin Immunol 2000, 106:507–513.

    Article  PubMed  CAS  Google Scholar 

  17. Heath H, Qin S, Rao P, et al.: Chemokine receptor usage by human eosinophils: the importance of CCR3 demonstrated using an antagonistic monoclonal antibody. J Clin Invest 1997, 99:178–184.

    PubMed  CAS  Google Scholar 

  18. Ying S, Meng Q, Zeibecoglou K, et al.: Eosinophil chemotactic chemokines (eotaxin, eotaxin-2, RANTES, monocyte chemoattractant protein-3 (MCP-3), and MCP-4), and C-C chemokine receptor 3 expression in bronchial biopsies from atopic and nonatopic (Intrinsic) asthmatics. J Immunol 1999, 163:6321–6329.

    PubMed  CAS  Google Scholar 

  19. Nagase H, Kudo K, Izumi S, et al.: Chemokine receptor expression profile of eosinophils at inflamed tissue sites: decreased CCR3 and increased CXCR4 expression by lung eosinophils. J Allergy Clin Immunol 2001, 108:563–569. The authors examined the profile of chemokine receptor expression between eosinophils at inflamed tissue, and circulating eosinophils.

    Article  PubMed  CAS  Google Scholar 

  20. Uguccioni M, Mackay CR, Ochensberger B, et al.: High expression of the chemokine receptor CCR3 in human blood basophils: role in activation by eotaxin, MCP-4, and other chemokines. J Clin Invest 1997, 100:1137–1143.

    PubMed  CAS  Google Scholar 

  21. Bischoff SC, Krieger M, Brunner T, Dahinden CA: Monocyte chemotactic protein 1 is a potent activator of human basophils. J Exp Med 1992, 175:1271–1275.

    Article  PubMed  CAS  Google Scholar 

  22. Bonecchi R, Bianchi G, Bordignon PP, et al.: Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med 1998, 187:129–134.

    Article  PubMed  CAS  Google Scholar 

  23. Proudfoot AE: Chemokine receptors: multifaceted therapeutic targets. Nat Rev Immunol 2002, 2:106–115.

    Article  PubMed  CAS  Google Scholar 

  24. Ying S, Robinson DS, Meng Q, et al.: Enhanced expression of eotaxin and CCR3 mRNA and protein in atopic asthma: association with airway hyperresponsiveness and predominant co-localization of eotaxin mRNA to bronchial epithelial and endothelial cells. Eur J Immunol 1997, 27:3507–3516.

    Article  PubMed  CAS  Google Scholar 

  25. Kawasaki S, Takizawa H, Yoneyama H, et al.: Intervention of thymus and activation-regulated chemokine attenuates the development of allergic airway inflammation and hyperresponsiveness in mice. J Immunol 2001, 166:2055–2062.

    PubMed  CAS  Google Scholar 

  26. Lloyd CM, Delaney T, Nguyen T, et al.: CC chemokine receptor (CCR)3/eotaxin is followed by CCR4/monocyte-derived chemokine in mediating pulmonary T helper lymphocyte type 2 recruitment after serial antigen challenge in vivo. J Exp Med 2000, 191:265–274. The first study to show that different chemokine receptors are used at distinct phases of disease to promote T-lymphocyte recruitment.

    Article  PubMed  CAS  Google Scholar 

  27. Gonzalo JA, Pan Y, Lloyd CM, et al.: Mouse monocyte-derived chemokine is involved in airway hyperreactivity and lung inflammation. J Immunol 1999, 163:403–411.

    PubMed  CAS  Google Scholar 

  28. Panina-Bordignon P, Papi A, Mariani M, et al.: The C-C chemokine receptors CCR4 and CCR8 identify airway T cells of allergen-challenged atopic asthmatics. J Clin Invest 2001, 107:1357–1364. The first study that determined that CCR4 and CCR8 are present on Th2 after allergen challenge in atopic asthmatic patients.

    Article  PubMed  CAS  Google Scholar 

  29. Campbell JJ, Brightling CE, Symon FA, et al.: Expression of chemokine receptors by lung T cells from normal and asthmatic subjects. J Immunol 2001, 166:2842–2848.

    PubMed  CAS  Google Scholar 

  30. Rimaniol AC, Till SJ, Garcia G, et al.: The CX3C chemokine fractalkine in allergic asthma and rhinitis. J Allergy Clin Immunol 2003, 112:1139–1146.

    Article  PubMed  CAS  Google Scholar 

  31. Rothenberg ME, MacLean JA, Pearlman E, et al.: Targeted disruption of the chemokine eotaxin partially reduces antigeninduced tissue eosinophilia. J Exp Med 1997, 185:785–790.

    Article  PubMed  CAS  Google Scholar 

  32. Elsner J, Petering H, Kimmig D, et al.: The CC chemokine receptor antagonist met-RANTES inhibits eosinophil effector functions. Int Arch Allergy Immunol 1999, 118:462–465.

    Article  PubMed  CAS  Google Scholar 

  33. Elsner J, Escher SE, Forssmann U: Chemokine receptor antagonists: a novel therapeutic approach in allergic diseases. Allergy 2004, 59:1243–1258. A very large review about academic and industrial research focused on compounds that block CCR3.

    Article  PubMed  CAS  Google Scholar 

  34. Humbles AA, Lu B, Friend DS, et al.: The murine CCR3 receptor regulates both the role of eosinophils and mast cells in allergen-induced airway inflammation and hyperresponsiveness. Proc Natl Acad Sci U S A 2002, 99:1479–1484. The authors describe the reduction of eosinophil infiltration after allergen challenge, but associated with an increase in AHR, in CCR3 KO mice.

    Article  PubMed  CAS  Google Scholar 

  35. Ma W, Bryce PJ, Humbles AA, et al.: CCR3 is essential for skin eosinophilia and airway hyperresponsiveness in a murine model of allergic skin inflammation. J Clin Invest 2002, 109:621–628. CCR3 is essential for eosinophil recruitment to the skin and the lung and for AHR in response to antigen inhalation in epicutaneously sensitized mice.

    Article  PubMed  CAS  Google Scholar 

  36. Chvatchko Y, Hoogewerf AJ, Meyer A, et al.: A key role for CC chemokine receptor 4 in lipopolysaccharide-induced endotoxic shock. J Exp Med 2000, 191:1755–1764.

    Article  PubMed  CAS  Google Scholar 

  37. Schuh JM, Power CA, Proudfoot AE, et al.: Airway hyperresponsiveness, but not airway remodeling, is attenuated during chronic pulmonary allergic responses to Aspergillus in CCR4-/-mice. FASEB J 2002, 16:1313–1315.

    PubMed  CAS  Google Scholar 

  38. Bishop B, Lloyd CM: CC chemokine ligand 1 promotes recruitment of eosinophils but not Th2 cells during the development of allergic airways disease. J Immunol 2003, 170:4810–4817.

    PubMed  CAS  Google Scholar 

  39. Chung CD, Kuo F, Kumer J, et al.: CCR8 is not essential for the development of inflammation in a mouse model of allergic airway disease. J Immunol 2003, 170:581–587.

    PubMed  CAS  Google Scholar 

  40. Chensue SW, Lukacs NW, Yang TY, et al.: Aberrant in vivo T helper type 2 cell response and impaired eosinophil recruitment in CC chemokine receptor 8 knockout mice. J Exp Med 2001, 193:573–584.

    Article  PubMed  CAS  Google Scholar 

  41. Zou YR, Kottmann AH, Kuroda M, et al.: Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998, 393:595–599.

    Article  PubMed  CAS  Google Scholar 

  42. Gonzalo JA, Lloyd CM, Peled A, et al.: Critical involvement of the chemotactic axis CXCR4/stromal cell-derived factor-1 alpha in the inflammatory component of allergic airway disease. J Immunol 2000, 165:499–508.

    PubMed  CAS  Google Scholar 

  43. Lukacs NW, Berlin A, Schols D, et al.: AMD3100, a CxCR4 antagonist, attenuates allergic lung inflammation and airway hyperreactivity. Am J Pathol 2002, 160:1353–1360. The first study that was able to manipulate allergic pulmonary inflammation, using a small antagonist.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia, G., Godot, V. & Humbert, M. New chemokine targets for asthma therapy. Curr Allergy Asthma Rep 5, 155–160 (2005). https://doi.org/10.1007/s11882-005-0090-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-005-0090-0

Keywords

Navigation