Skip to main content

Advertisement

Log in

X-linked immunodeficiencies

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Recent advances in molecular genetics have allowed identification of at least seven genes involved in X-linked immunodeficiencies. This has resulted not only in improved diagnostic possibilities but also in a better understanding of the pathophysiology of these disorders. In some cases, mutations in the same gene have been shown to cause distinct clinical and immunologic phenotypes, demonstrating a strong genotype-phenotype correlation. Identification of the molecular basis of these diseases has permitted creation of disease-specific registries, with a better characterization of the clinical and immunologic features associated with the various forms of X-linked immunodeficiencies. Additionally, gene therapy has been attempted in X-linked severe combined immune deficiency (XSCID), with clear evidence of successful correction of the pathology, and the appearance of severe adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Bruton OC: Agammaglobulinemia. Pediatrics 1952, 9:722–728.

    PubMed  CAS  Google Scholar 

  2. Rawlings D: X-linked Agammaglobulinemia. In Immunologic Disorders in Infants and Children, edn 5. Edited by Stiehm ER, Ochs HD, Winkelstein JA. Philadelphia: Elsevier Saunders; 2004:357–369.

    Google Scholar 

  3. Ochs HD, Smith CI: X-linked agammaglobulinemia: a clinical and molecular analysis. Medicine (Baltimore) 1996, 75:287–299.

    Article  CAS  Google Scholar 

  4. Lederman HM, Winkelstein JA: X-linked agammaglobulinemia: an analysis of 96 patients. Medicine (Baltimore) 1985, 64:145–156.

    CAS  Google Scholar 

  5. Hermaszewski RA, Webster AD: Primary hypogammaglobulinaemia: a survey of clinical manifestations and complications. Q J Med 1993, 86:31–42.

    PubMed  CAS  Google Scholar 

  6. Futatani T, Watanabe C, Baba Y, et al.: Bruton’s tyrosine kinase is present in normal platelets and its absence identifies patients with X-linked agammaglobulinaemia and carrier females. Br J Haematol 2001, 114:141–149.

    Article  PubMed  CAS  Google Scholar 

  7. Vihinen M, Brandau O, Branden LJ, et al.: BTKbase, mutation database for X-linked agammaglobulinemia (XLA). Nucleic Acids Res 1998, 26:242–247.

    Article  PubMed  CAS  Google Scholar 

  8. Gardulf A, Andersen V, Bjorkander J, et al.: Subcutaneous immunoglobulin replacement in patients with primary antibody deficiencies: safety and costs. Lancet 1995, 345:365–369.

    Article  PubMed  CAS  Google Scholar 

  9. Yu PW, Tabuchi RS, Kato RM, et al..: Sustained correction of B cell development and function in a murine model of X-linked agammaglobulinemia (XLA) using retroviralmediated gene transfer. Blood 2004, In press. Using the XID model, these authors provide proof of the principle that gene therapy selectively reconstitutes the B-cell defect in XLA.

  10. Fischer A, Notarangelo L: Combined immunodeficiencies. In Immunologic Disorders in Infants and Children, edn 5. Edited by Stiehm ER, Ochs HD, Winkelstein JA. Philadelphia: Elsevier Saunders; 2004:447–479.

    Google Scholar 

  11. Noguchi M, Yi H, Rosenblatt HM, et al.: Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 1993, 73:147–157.

    Article  PubMed  CAS  Google Scholar 

  12. Malek TR, Porter BO, He YW: Multiple gamma c-dependent cytokines regulate T-cell development. Immunol Today 1999, 20:71–76.

    Article  PubMed  CAS  Google Scholar 

  13. Puel A, Leonard WJ: Mutations in the gene for the IL-7 receptor result in T(-)B(+)NK(+) severe combined immunodeficiency disease. Curr Opin Immunol 2000, 12:468–473.

    Article  PubMed  CAS  Google Scholar 

  14. Lodolce JP, Boone DL, Chai S, et al.: IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 1998, 9:669–676.

    Article  PubMed  CAS  Google Scholar 

  15. Hale LP, Buckley RH, Puck JM, Patel DD: Abnormal development of thymic dendritic and epithelial cells in human X-linked severe combined immunodeficiency. Clin Immunol 2004, 110:63–70.

    Article  PubMed  CAS  Google Scholar 

  16. Puck JM: IL2RGbase: a database of gamma c-chain defects causing human X-SCID. Immunol Today 1996, 17:507–511.

    Article  PubMed  CAS  Google Scholar 

  17. Ginn SL, Smyth C, Wong M, et al.: A novel splice-site mutation in the common gamma chain (gamma c) gene IL2RG results in X-linked severe combined immunodeficiency with an atypical NK+ phenotype. Hum Mutat 2004, 23:522–523.

    Article  PubMed  CAS  Google Scholar 

  18. Bousso P, Wahn V, Douagi I, et al.: Diversity, functionality, and stability of the T cell repertoire derived in vivo from a single human T cell precursor. Proc Natl Acad Sci U S A 2000, 97:274–278.

    Article  PubMed  CAS  Google Scholar 

  19. Gatti RA, Meuwissen HJ, Allen HD, et al.: Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet 1968, 2:1366–1369.

    Article  PubMed  CAS  Google Scholar 

  20. Buckley RH: Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Annu Rev Immunol 2004, 22:625–655.

    Article  PubMed  CAS  Google Scholar 

  21. Antoine C, Muller S, Cant A, et al.: Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968–99. Lancet 2003, 361:553–560.

    Article  PubMed  Google Scholar 

  22. Hacein-Bey S, Basile GD, Lemerle J, et al.: gamma c gene transfer in the presence of stem cell factor, FLT-3L, interleukin-7 (IL-7), IL-1, and IL-15 cytokines restores T-cell differentiation from gammac(-) X-linked severe combined immunodeficiency hematopoietic progenitor cells in murine fetal thymic organ cultures. Blood 1998, 92:4090–4097.

    PubMed  CAS  Google Scholar 

  23. Soudais C, Shiho T, Sharara LI, et al.: Stable and functional lymphoid reconstitution of common cytokine receptor gamma chain deficient mice by retroviral-mediated gene transfer. Blood 2000, 95:3071–3077.

    PubMed  CAS  Google Scholar 

  24. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, et al.:Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000, 288:669–672.

    Article  PubMed  CAS  Google Scholar 

  25. Hacein-Bey S, LeDeist F, Carlier F: Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 2002, 1185–1193. Report of the first successful gene therapy in humans.

  26. Hacein-Bey S, von Kalle C, Schmidt M, et al.: LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003, 415–419.

  27. Notarangelo L, Durandy A: X-linked hyper-IgM syndrome type 1 due to CD40 ligand deficiency (HIGM1). In Immunologic Disorders in Infants and Children, edn 5. Edited by Stiehm ER, Ochs HD, Winkelstein JA. Philadelphia: Elsevier Saunders; 2004:380–384.

    Google Scholar 

  28. van Kooten C, Banchereau J: Functions of CD40 on B cells, dendritic cells and other cells. Curr Opin Immunol 1997, 9:330–337.

    Article  PubMed  Google Scholar 

  29. Nonoyama S, Hollenbaugh D, Aruffo A, et al.: B cell activation via CD40 is required for specific antibody production by antigen-stimulated human B cells. J Exp Med 1993, 178:1097–1102.

    Article  PubMed  CAS  Google Scholar 

  30. Levy J, Espanol-Boren T, Thomas C, et al.: Clinical spectrum of X-linked hyper-IgM syndrome. J Pediatr 1997, 131:47–54.

    Article  PubMed  CAS  Google Scholar 

  31. Winkelstein JA, Marino MC, Ochs H, et al.: The X-linked hyper-IgM syndrome: clinical and immunologic features of 79 patients. Medicine (Baltimore) 2003, 82:373–384. A comprehensive report from the National XHIG Registry.

    Article  CAS  Google Scholar 

  32. Seyama K, Nonoyama S, Gangsaas I, et al.: Mutations of the CD40 ligand gene and its effect on CD40 ligand expression in patients with X-linked hyper IgM syndrome. Blood 1998, 92:2421–2434.

    PubMed  CAS  Google Scholar 

  33. Villa A, Notarangelo LD, Di Santo JP, et al.: Organization of the human CD40L gene: implications for molecular defects in X chromosome-linked hyper-IgM syndrome and prenatal diagnosis. Proc Natl Acad Sci U S A 1994, 91:2110–2114.

    Article  PubMed  CAS  Google Scholar 

  34. Tomizawa D, Imai K, Ito S, et al.: Allogeneic hematopoietic stem cell transplantation for seven children with X-linked hyper-IgM syndrome: a single center experience. Am J Hematol 2004, 76:33–39.

    Article  PubMed  Google Scholar 

  35. Gennery AR, Khawaja K, Veys P, et al.: Treatment of CD40 ligand deficiency by hematopoietic stem cell transplantation: a survey of the European experience, 1993–2002. Blood 2004, 103:1152–1157.

    Article  PubMed  CAS  Google Scholar 

  36. Clarke A, Phillips DI, Brown R, Harper PS: Clinical aspects of X-linked hypohidrotic ectodermal dysplasia. Arch Dis Child 1987, 62:989–996.

    PubMed  CAS  Google Scholar 

  37. Abinun M, Spickett G, Appleton AL, et al.: Anhidrotic ectodermal dysplasia associated with specific antibody deficiency. Eur J Pediatr 1996, 155:146–147.

    Article  PubMed  CAS  Google Scholar 

  38. Schweizer P, Kalhoff H, Horneff G, et al.: [Polysaccharide specific humoral immunodeficiency in ectodermal dysplasia: case report of a boy with two affected brothers]. Klin Padiatr 1999, 211:459–461.

    Article  PubMed  CAS  Google Scholar 

  39. Carrol ED, Gennery AR, Flood TJ, et al.: Anhidrotic ectodermal dysplasia and immunodeficiency: the role of NEMO. Arch Dis Child 2003, 88:340–341.

    Article  PubMed  CAS  Google Scholar 

  40. Zonana J, Elder ME, Schneider LC, et al.: A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO). Am J Hum Genet 2000, 67:1555–1562.

    Article  PubMed  CAS  Google Scholar 

  41. Doffinger R, Smahi A, Bessia C, et al.: X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet 2001, 27:277–285.

    Article  PubMed  CAS  Google Scholar 

  42. Jain A, Ma CA, Liu S, et al.: Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat Immunol 2001, 2:223–228.

    Article  PubMed  CAS  Google Scholar 

  43. Orange JS, Geha RS: Finding NEMO: genetic disorders of NF-[kappa]B activation. J Clin Invest 2003, 112:983–985. This is a straight-forward review of NF-kB signaling and its regulation.

    Article  PubMed  CAS  Google Scholar 

  44. Aradhya S, Woffendin H, Jakins T, et al.: A recurrent deletion in the ubiquitously expressed NEMO (IKK-gamma) gene accounts for the vast majority of incontinentia pigmenti mutations. Hum Mol Genet 2001, 10:2171–2179.

    Article  PubMed  CAS  Google Scholar 

  45. Sullivan J: X-linked lymphoproliferative syndrome. In Immunologic Disorders in Infants and Children, edn 5. Edited by Stiehm ER, Ochs HD, Winkelstein JA. Philadelphia: Elsevier Saunders; 2004:516–520.

    Google Scholar 

  46. Engel P, Eck MJ, Terhorst C: The SAP and SLAM families in immune responses and X-linked lymphoproliferative disease. Nat Rev Immunol 2003, 3:813–821. A detailed review of the molecular background of XLP.

    Article  PubMed  CAS  Google Scholar 

  47. Latour S, Veillette A: Molecular and immunological basis of X-linked lymphoproliferative disease. Immunol Rev 2003, 192:212–224.

    Article  PubMed  CAS  Google Scholar 

  48. Simarro M, Lanyi A, Howie D, et al.: SAP increases FynT kinase activity and is required for phosphorylation of SLAM and Ly9. Int Immunol 2004, 16:727–736.

    Article  PubMed  CAS  Google Scholar 

  49. Latour S, Gish G, Helgason CD, et al.: Regulation of SLAMmediated signal transduction by SAP, the X-linked lymphoproliferative gene product. Nat Immunol 2001, 2:681–690.

    Article  PubMed  CAS  Google Scholar 

  50. Wu C, Nguyen KB, Pien GC, et al.: SAP controls T cell responses to virus and terminal differentiation of TH2 cells. Nat Immunol 2001, 2:410–414.

    Article  PubMed  CAS  Google Scholar 

  51. Czar MJ, Kersh EN, Mijares LA, et al.: Altered lymphocyte responses and cytokine production in mice deficient in the X-linked lymphoproliferative disease gene SH2D1A/DSHP/ SAP. Proc Natl Acad Sci U S A 2001, 98:7449–7454.

    Article  PubMed  CAS  Google Scholar 

  52. Valdez PA, Wang H, Seshasayee D, et al.: NTB-A, a new activating receptor in T cells that regulates autoimmune disease. J Biol Chem 2004, 279:18662–18669.

    Article  PubMed  CAS  Google Scholar 

  53. Parolini S, Bottino C, Falco M, et al.: X-linked lymphoproliferative disease. 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein-Barr virus-infected cells. J Exp Med 2000, 192:337–346.

    Article  PubMed  CAS  Google Scholar 

  54. Bottino C, Falco M, Parolini S, et al.: NTB-A [correction of GNTB-A], a novel SH2D1A-associated surface molecule contributing to the inability of natural killer cells to kill Epstein-Barr virus-infected B cells in X-linked lymphoproliferative disease. J Exp Med 2001, 194:235–246.

    Article  PubMed  CAS  Google Scholar 

  55. Sharifi R, Sinclair JC, Gilmour KC, et al.: SAP mediates specific cytotoxic T-cell functions in X-linked lymphoproliferative disease. Blood 2004, 103:3821–3827.

    Article  PubMed  CAS  Google Scholar 

  56. Yin L, Al-Alem U, Liang J, et al.: Mice deficient in the X-linked lymphoproliferative disease gene sap exhibit increased susceptibility to murine gammaherpesvirus-68 and hypogammaglobulinemia. J Med Virol 2003, 71:446–455.

    Article  PubMed  CAS  Google Scholar 

  57. Crotty S, Kersh EN, Cannons J, et al.: SAP is required for generating long-term humoral immunity. Nature 2003, 421:282–287.

    Article  PubMed  CAS  Google Scholar 

  58. Malbran A, Belmonte L, Ruibal-Ares B, et al.: Loss of circulating CD27+ memory B cells and CCR4+ T cells occurring in association with elevated EBV loads in XLP patients surviving primary EBV infection. Blood 2004, 103:1625–1631.

    Article  PubMed  CAS  Google Scholar 

  59. Gilmour KC, Gaspar HB: Pathogenesis and diagnosis of X-linked lymphoproliferative disease. Expert Rev Mol Diagn 2003, 3:549–561.

    Article  PubMed  CAS  Google Scholar 

  60. Morra M, Silander O, Calpe S, et al.: Alterations of the X-linked lymphoproliferative disease gene SH2D1A in common variable immunodeficiency syndrome. Blood 2001, 98:1321–1325.

    Article  PubMed  CAS  Google Scholar 

  61. Seemayer TA, Gross TG, Egeler RM, et al.: X-linked lymphoproliferative disease: twenty-five years after the discovery. Pediatr Res 1995, 38:471–478.

    Article  PubMed  CAS  Google Scholar 

  62. Ziegner UH, Ochs HD, Schanen C, et al.: Unrelated umbilical cord stem cell transplantation for X-linked immunodeficiencies. J Pediatr 2001, 138:570–573.

    Article  PubMed  CAS  Google Scholar 

  63. Sanzone S, Zeyda M, Saemann MD, et al.: SLAM-associated protein deficiency causes imbalanced early signal transduction and blocks downstream activation in T cells from Xlinked lymphoproliferative disease patients. J Biol Chem 2003, 278:29593–29599.

    Article  PubMed  CAS  Google Scholar 

  64. Ochs H, Nelson D, Stiehm E: Other well-definied immunodeficiency syndromes. In Immunologic Disorders in Infants and Children, edn 5. Edited by Stiehm ER, Ochs HD, Winkelstein JA. Philadelphia: Elsevier Saunders; 2004:505–516.

    Google Scholar 

  65. Derry JM, Ochs HD, Francke U: Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell 1994, 79:following 922.

    Google Scholar 

  66. Villa A, Notarangelo L, Macchi P, et al.: X-linked thrombocytopenia and Wiskott-Aldrich syndrome are allelic diseases with mutations in the WASP gene. Nat Genet 1995, 9:414–417.

    Article  PubMed  CAS  Google Scholar 

  67. Ochs HD: The Wiskott-Aldrich syndrome. Isr Med Assoc J 2002, 4:379–384.

    PubMed  CAS  Google Scholar 

  68. Wengler G, Gorlin JB, Williamson JM, et al.: Nonrandom inactivation of the X chromosome in early lineage hematopoietic cells in carriers of Wiskott-Aldrich syndrome. Blood 1995, 85:2471–2477.

    PubMed  CAS  Google Scholar 

  69. Thrasher AJ: WASP in immune-system organization and function. Nat Rev Immunol 2002, 2:635–646.

    Article  PubMed  CAS  Google Scholar 

  70. Notarangelo LD, Ochs HD: Wiskott-Aldrich Syndrome: a model for defective actin reorganization, cell trafficking and synapse formation. Curr Opin Immunol 2003, 15:585–591.

    Article  PubMed  CAS  Google Scholar 

  71. Linder S, Wintergerst U, Bender-Gotze C, et al.: Macrophages of patients with X-linked thrombocytopenia display an attenuated Wiskott-Aldrich syndrome phenotype. Immunol Cell Biol 2003, 81:130–136.

    Article  PubMed  CAS  Google Scholar 

  72. Martinez-Quiles N, Rohatgi R, Anton IM, et al.: WIP regulates N-WASP-mediated actin polymerization and filopodium formation. Nat Cell Biol 2001, 3:484–491.

    Article  PubMed  CAS  Google Scholar 

  73. Sasahara Y, Rachid R, Byrne MJ, et al.: Mechanism of recruitment of WASP to the immunological synapse and of its activation following TCR ligation. Mol Cell 2002, 10:1269–1281.

    Article  PubMed  CAS  Google Scholar 

  74. Kim AS, Kakalis LT, Abdul-Manan N, et al.: Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature 2000, 404:151–158.

    Article  PubMed  CAS  Google Scholar 

  75. Devriendt K, Kim AS, Mathijs G, et al.: Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat Genet 2001, 27:313–317.

    Article  PubMed  CAS  Google Scholar 

  76. Rengan R, Ochs HD, Sweet LI, et al.: Actin cytoskeletal function is spared, but apoptosis is increased, in WAS patient hematopoietic cells. Blood 2000, 95:1283–1292.

    PubMed  CAS  Google Scholar 

  77. Ochs HD, Slichter SJ, Harker LA, et al.: The Wiskott-Aldrich syndrome: studies of lymphocytes, granulocytes, and platelets. Blood 1980, 55:243–252.

    PubMed  CAS  Google Scholar 

  78. Dupre L, Aiuti A, Trifari S, et al.: Wiskott-Aldrich syndrome protein regulates lipid raft dynamics during immunological synapse formation. Immunity 2002, 17:157–166.

    Article  PubMed  CAS  Google Scholar 

  79. Imai K, Morio T, Zhu Y, et al.: Clinical course of patients with WASP gene mutations. Blood 2004, 103:456–464. This longitudinal study of a cohort of WAS patients demonstrates a close correlation between genotype and clinical outcome.

    Article  PubMed  CAS  Google Scholar 

  80. Filipovich AH, Stone JV, Tomany SC, et al.: Impact of donor type on outcome of bone marrow transplantation for Wiskott-Aldrich syndrome: collaborative study of the International Bone Marrow Transplant Registry and the National Marrow Donor Program. Blood 2001, 97:1598–1603.

    Article  PubMed  CAS  Google Scholar 

  81. Klein C, Nguyen D, Liu CH, et al.: Gene therapy for Wiskott-Aldrich syndrome: rescue of T-cell signaling and amelioration of colitis upon transplantation of retrovirally transduced hematopoietic stem cells in mice. Blood 2003, 101:2159–2166.

    Article  PubMed  CAS  Google Scholar 

  82. Strom TS, Turner SJ, Andreansky S, et al.: Defects in T-cellmediated immunity to influenza virus in murine Wiskott-Aldrich syndrome are corrected by oncoretroviral vectormediated gene transfer into repopulating hematopoietic cells. Blood 2003, 102:3108–3116.

    Article  PubMed  CAS  Google Scholar 

  83. Wada T, Jagadeesh GJ, Nelson DL, Candotti F: Retrovirusmediated WASP gene transfer corrects Wiskott-Aldrich syndrome T-cell dysfunction. Hum Gene Ther 2002, 13:1039–1046.

    Article  PubMed  CAS  Google Scholar 

  84. Ariga T, Kondoh T, Yamaguchi K, et al.: Spontaneous in vivo reversion of an inherited mutation in the Wiskott-Aldrich syndrome. J Immunol 2001, 166:5245–5249.

    PubMed  CAS  Google Scholar 

  85. Wada T, Schurman SH, Otsu M, et al.: Somatic mosaicism in Wiskott-Aldrich syndrome suggests in vivo reversion by a DNA slippage mechanism. Proc Natl Acad Sci U S A 2001, 98:8697–8702.

    Article  PubMed  CAS  Google Scholar 

  86. Powell BR, Buist NR, Stenzel P: An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J Pediatr 1982, 100:731–737.

    Article  PubMed  CAS  Google Scholar 

  87. Wildin RS, Smyk-Pearson S, Filipovich AH: Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J Med Genet 2002, 39:537–545.

    Article  PubMed  CAS  Google Scholar 

  88. Seidman EG, Lacaille F, Russo P, et al.: Successful treatment of autoimmune enteropathy with cyclosporine. J Pediatr 1990, 117:929–932.

    Article  PubMed  CAS  Google Scholar 

  89. Russell W, Russell L, Gower J: Exceptional inheritance of a sex-linked gene in the mouse explained on the basis that the X/O sex-chromosome constitution is female. Proc Natl Acad Sci U S A 1959, 554–560.

  90. Fontenot JD, Gavin MA, Rudensky AY: FOXP3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003, 4:330–336.

    Article  PubMed  CAS  Google Scholar 

  91. Hori S, Nomura T, Sakaguchi S: Control of regulatory T cell development by the transcription factor Foxp3. Science 2003, 299:1057–1061. This study demonstrates the importance of FOXP3 in the generation of regulatory T cells.

    Article  PubMed  CAS  Google Scholar 

  92. Khattri R, Cox T, Yasayko SA, Ramsdell F: An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 2003, 4:337–342.

    Article  PubMed  CAS  Google Scholar 

  93. Bach JF: Regulatory T cells under scrutiny. Nat Rev Immunol 2003, 3:189–198.

    Article  PubMed  CAS  Google Scholar 

  94. Brunkow ME, Jeffery EW, Hjerrild KA, et al.: Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001, 27:68–73.

    Article  PubMed  CAS  Google Scholar 

  95. Chatila TA, Blaeser F, Ho N, et al.: JM2, encoding a fork headrelated protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J Clin Invest 2000, 106:R75-R81.

    Article  PubMed  CAS  Google Scholar 

  96. Bennett CL, Brunkow ME, Ramsdell F, et al.: A rare polyadenylation signal mutation of the FOXP3 gene (AAUAAA->AAUGAA) leads to the IPEX syndrome. Immunogenetics 2001, 53:435–439.

    Article  PubMed  CAS  Google Scholar 

  97. Wildin RS, Ramsdell F, Peake J, et al.: X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 2001, 27:18–20.

    Article  PubMed  CAS  Google Scholar 

  98. Gambineri E, Torgerson TR, Ochs HD: Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr Opin Rheumatol 2003, 15:430–435.

    Article  PubMed  CAS  Google Scholar 

  99. Bennett CL, Christie J, Ramsdell F, et al.: The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001, 27:20–21.

    Article  PubMed  CAS  Google Scholar 

  100. DiRocco M, Marta R: X linked immune dysregulation, neonatal insulin dependent diabetes, and intractable diarrhoea. Arch Dis Child Fetal Neonatal Ed 1996:F144.

  101. Baud O, Goulet O, Canioni D, et al.: Treatment of the immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) by allogeneic bone marrow transplantation. N Engl J Med 2001, 344:1758–1762.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochs, H.D., Notarangelo, L.D. X-linked immunodeficiencies. Curr Allergy Asthma Rep 4, 339–348 (2004). https://doi.org/10.1007/s11882-004-0082-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-004-0082-5

Keywords

Navigation