Skip to main content

Advertisement

Log in

Oxidative stress in the pathogenesis of asthma

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Asthma affects 5% to 10% of the population of the United States. In asthmatics, oxidative stress occurs not only as a result of inflammation but also from environmental exposure to air pollution. The specific localization of antioxidants in the lung and the adaptive changes during asthma underscore the importance of oxidative stress, and therapeutic interventions that decrease exposure to environmental reactive oxygen species or augment endogenous antioxidant defenses might be beneficial as adjunctive therapies in asthmatic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References and Recommended Reading

  1. Lemanske RF Jr, Busse WW: 6. Asthma. J Allergy Clin Immunol 2003, 111(Suppl2):S502-S519.

    Article  PubMed  CAS  Google Scholar 

  2. Mannino DM, Homa DM, Akinbami LJ, et al.: Surveillance for asthma: United States, 1980–1999. MMWR Surveill Summ 2002, 51:1–13.

    Google Scholar 

  3. Andreadis AA, Hazen SL, Comhair SA, Erzurum SC: Oxidative and nitrosative events in asthma. Free Radic Biol Med 2003, 35:213–225. An exhaustive and current review of the role of ROS/RNS in asthma.

    Article  PubMed  CAS  Google Scholar 

  4. Bowler RP, Crapo JD: Oxidative stress in airways: Is there a role for extracellular superoxide dismutase? Am J Respir Crit Care Med 2002, 166(12 Pt 2):S38-S43.

    Article  PubMed  Google Scholar 

  5. Halliwell B, Gutteridge JMC: Free radicals in biology and medicine. Oxford, England: Oxford University Press; 1999.The bible of oxidative stress in biology.

    Google Scholar 

  6. Evans P, Lyras L, Halliwell B: Measurement of protein carbonyls in human brain tissue. Methods Enzymol 1999, 300:145–156.

    PubMed  CAS  Google Scholar 

  7. Azumi H, Inoue N, Takeshita S, et al.: Expression of NADH/ NADPH oxidase p22phox in human coronary arteries. Circulation 1999, 100:1494–1498.

    PubMed  CAS  Google Scholar 

  8. Thannickal VJ, Fanburg BL: Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 2000, 279:L1005-L1028. The role of ROS in cell signaling is an emerging field. This review summarizes the potential mechanisms by which ROS affects signaling pathways.

    PubMed  CAS  Google Scholar 

  9. McConnell R, Berhane K, Gilliland F, et al.: Asthma in exercising children exposed to ozone: a cohort study. Lancet 2002, 359:386–391.

    Article  PubMed  CAS  Google Scholar 

  10. Sanders SP, Zweier JL, Harrison SJ, et al.: Spontaneous oxygen radical production at sites of antigen challenge in allergic subjects. Am J Respir Crit Care Med 1995, 151:1725–1733.

    PubMed  CAS  Google Scholar 

  11. Jarjour NN, Calhoun WJ: Enhanced production of oxygen radicals in asthma. J Lab Clin Med 1994, 123:131–136.

    PubMed  CAS  Google Scholar 

  12. Calhoun WJ, Reed HE, Moest DR, Stevens CA: Enhanced superoxide production by alveolar macrophages and air-space cells, airway inflammation, and alveolar macrophage density changes after segmental antigen bronchoprovocation in allergic subjects. Am Rev Respir Dis 1992, 145:317–325.

    PubMed  CAS  Google Scholar 

  13. Nadeem A, Chhabra SK, Masood A, Raj HG: Increased oxidative stress and altered levels of antioxidants in asthma. J Allergy Clin Immunol 2003, 111:72–78.

    Article  PubMed  CAS  Google Scholar 

  14. Vachier I, Damon M, Le Doucen C, et al.: Increased oxygen species generation in blood monocytes of asthmatic patients. Am Rev Respir Dis 1992, 146:1161–1166.

    PubMed  CAS  Google Scholar 

  15. Hanazawa T, Kharitonov SA, Barnes PJ: Increased nitrotyrosine in exhaled breath condensate of patients with asthma. Am J Respir Crit Care Med 2000, 162:1273–1276.

    PubMed  CAS  Google Scholar 

  16. MacPherson JC, Comhair SA, Erzurum SC, et al.: Eosinophils are a major source of nitric oxide-derived oxidants in severe asthma: characterization of pathways available to eosinophils for generating reactive nitrogen species. J Immunol 2001, 166:5763–5772.

    PubMed  CAS  Google Scholar 

  17. Kaminsky DA, Mitchell J, Carroll N, et al.: Nitrotyrosine formation in the airways and lung parenchyma of patients with asthma. J Allergy Clin Immunol 1999, 104:747–754.

    Article  PubMed  CAS  Google Scholar 

  18. Aldridge RE, Chan T, van Dalen CJ, et al.: Eosinophil peroxidase produces hypobromous acid in the airways of stable asthmatics. Free Radic Biol Med 2002, 33:847–856.

    Article  PubMed  CAS  Google Scholar 

  19. Schock BC, Young IS, Brown V, et al.: Antioxidants and oxidative stress in BAL fluid of atopic asthmatic children. Pediatr Res 2003, 53:375–381.

    Article  PubMed  CAS  Google Scholar 

  20. Gaillard MC, Kilroe-Smith TA, Nogueira C, et al.: Alpha-1-protease inhibitor in bronchial asthma: phenotypes and biochemical characteristics. Am Rev Respir Dis 1992, 145:1311–1315.

    PubMed  CAS  Google Scholar 

  21. Montuschi P, Corradi M, Ciabattoni G, et al.: Increased 8-isoprostane, a marker of oxidative stress, in exhaled condensate of asthma patients. Am J Respir Crit Care Med 1999, 160:216–220.

    PubMed  CAS  Google Scholar 

  22. Baraldi E, Ghiro L, Piovan V, et al.: Increased exhaled 8-isoprostane in childhood asthma. Chest 2003, 124:25–31.

    Article  PubMed  CAS  Google Scholar 

  23. Wood LG, Fitzgerald DA, Gibson PG, et al.: Lipid peroxidation as determined by plasma isoprostanes is related to disease severity in mild asthma. Lipids 2000, 35:967–974.

    Article  PubMed  CAS  Google Scholar 

  24. Nijkamp FP, Henricks PA: Receptors in airway disease: betaadrenoceptors in lung inflammation. Am Rev Respir Dis 1990, 141:S145-S150.

    PubMed  CAS  Google Scholar 

  25. Katsumata U, Miura M, Ichinose M, et al.: Oxygen radicals produce airway constriction and hyperresponsiveness in anesthetized cats. Am Rev Respir Dis 1990, 141:1158–1161.

    PubMed  CAS  Google Scholar 

  26. Stewart RM, Weir EK, Montgomery MR, Niewoehner DE: Hydrogen peroxide contracts airway smooth muscle: a possible endogenous mechanism. Respir Physiol 1981, 45:333–342.

    Article  PubMed  CAS  Google Scholar 

  27. Wright DT, Fischer BM, Li C, et al.: Oxidant stress stimulates mucin secretion and PLC in airway epithelium via a nitric oxide-dependent mechanism. Am J Physiol 1996, 271:L854-L861.

    PubMed  CAS  Google Scholar 

  28. Sadeghi-Hashjin G, Folkerts G, Henricks PA, et al.: Peroxynitrite induces airway hyperresponsiveness in guinea pigs in vitro and in vivo. Am J Respir Crit Care Med 1996, 153:1697–1701.

    PubMed  CAS  Google Scholar 

  29. Marshall HE, Stamler JS: NO waiting to exhale in asthma. Am J Respir Crit Care Med 2000, 161:685–687.

    PubMed  CAS  Google Scholar 

  30. Su WY, Folz R, Chen JS, et al.: Extracellular superoxide dismutase mRNA expressions in the human lung by in situ hybridization. Am J Respir Cell Mol Biol 1997, 16:162–170.

    PubMed  CAS  Google Scholar 

  31. Oury TD, Chang LY, Marklund SL, et al.: Immunocytochemical localization of extracellular superoxide dismutase in human lung. Lab Invest 1994, 70:889–898.

    PubMed  CAS  Google Scholar 

  32. Harrison DJ, Cantlay AM, Rae F, et al.: Frequency of glutathione S-transferase M1 deletion in smokers with emphysema and lung cancer. Hum Exp Toxicol 1997, 16:356–360.

    Article  PubMed  CAS  Google Scholar 

  33. Chang LY, Crapo JD: Inhibition of airway inflammation and hyperreactivity by an antioxidant mimetic. Free Radic Biol Med 2002, 33:379–386.

    Article  PubMed  CAS  Google Scholar 

  34. Corradi M, Folesani G, Andreoli R, et al.: Aldehydes and glutathione in exhaled breath condensate of children with asthma exacerbation. Am J Respir Crit Care Med 2003, 167:395–359.

    Article  PubMed  Google Scholar 

  35. Dauletbaev N, Rickmann J, Viel K, et al.: Glutathione in induced sputum of healthy individuals and patients with asthma. Thorax 2001, 56:13–18.

    Article  PubMed  CAS  Google Scholar 

  36. Vural H, Uzun K: Serum and red blood cell antioxidant status in patients with bronchial asthma. Can Respir J 2000, 7:476–480.

    PubMed  CAS  Google Scholar 

  37. Powell CV, Nash AA, Powers HJ, Primhak RA: Antioxidant status in asthma. Pediatr Pulmonol 1994, 18:34–38.

    Article  PubMed  CAS  Google Scholar 

  38. Kelly FJ, Mudway I, Blomberg A, et al.: Altered lung antioxidant status in patients with mild asthma. Lancet 1999, 354:482–483.

    Article  PubMed  CAS  Google Scholar 

  39. Aderele WI, Ette SI, Oduwole O, Ikpeme SJ: Plasma vitamin C (ascorbic acid) levels in asthmatic children. Afr J Med Med Sci 1985, 14:115–120.

    PubMed  CAS  Google Scholar 

  40. Olusi SO, Ojutiku OO, Jessop WJ, Iboko MI: Plasma and white blood cell ascorbic acid concentrations in patients with bronchial asthma. Clin Chim Acta 1979, 92:161–166.

    Article  PubMed  CAS  Google Scholar 

  41. Ting S, Mansfield LE, Yarbrough J: Effects of ascorbic acid on pulmonary functions in mild asthma. J Asthma 1983, 20:39–42.

    PubMed  CAS  Google Scholar 

  42. Kalayci O, Besler T, Kilinc K, et al.: Serum levels of antioxidant vitamins (alpha tocopherol, beta carotene, and ascorbic acid) in children with bronchial asthma. Turk J Pediatr 2000, 42:17–21.

    PubMed  CAS  Google Scholar 

  43. Jorres R, Nowak D, Magnussen H: The effect of ozone exposure on allergen responsiveness in subjects with asthma or rhinitis. Am J Respir Crit Care Med 1996, 153:56–64.

    PubMed  CAS  Google Scholar 

  44. Romieu I, Sienra-Monge JJ, Ramirez-Aguilar M, et al.: Antioxidant supplementation and lung functions among children with asthma exposed to high levels of air pollutants. Am J Respir Crit Care Med 2002, 166:703–709.

    Article  PubMed  Google Scholar 

  45. Cohen HA, Neuman I, Nahum H: Blocking effect of vitamin C in exercise-induced asthma. Arch Pediatr Adolesc Med 1997, 151:367–370.

    PubMed  CAS  Google Scholar 

  46. Bylin G, Hedenstierna G, Lagerstrand L, Wagner PD: No influence of acetylcysteine on gas exchange and spirometry in chronic asthma. Eur J Respir Dis 1987, 71:102–107.

    PubMed  CAS  Google Scholar 

  47. Rahman I, Morrison D, Donaldson K, MacNee W: Systemic oxidative stress in asthma, COPD, and smokers. Am J Respir Crit Care Med 1996, 154:1055–1060.

    PubMed  CAS  Google Scholar 

  48. Teramoto S, Shu CY, Ouchi Y, Fukuchi Y: Increased spontaneous production and generation of superoxide anion by blood neutrophils in patients with asthma. J Asthma 1996, 33:149–155.

    PubMed  CAS  Google Scholar 

  49. Sedgwick JB, Geiger KM, Busse WW: Superoxide generation by hypodense eosinophils from patients with asthma. Am Rev Respir Dis 1990, 142:120–125.

    PubMed  CAS  Google Scholar 

  50. Loukides S, Bouros D, Papatheodorou G, et al.: The relationships among hydrogen peroxide in expired breath condensate, airway inflammation, and asthma severity. Chest 2002, 121:338–346.

    Article  PubMed  CAS  Google Scholar 

  51. Emelyanov A, Fedoseev G, Abulimity A, et al.: Elevated concentrations of exhaled hydrogen peroxide in asthmatic patients. Chest 2001, 120:1136–1139.

    Article  PubMed  CAS  Google Scholar 

  52. Ganas K, Loukides S, Papatheodorou G, et al.: Total nitrite/ nitrate in expired breath condensate of patients with asthma. Respir Med 2001, 95:649–654.

    Article  PubMed  CAS  Google Scholar 

  53. Kharitonov SA, Barnes PJ: Biomarkers of some pulmonary diseases in exhaled breath. Biomarkers 2002, 7:1–32.

    Article  PubMed  CAS  Google Scholar 

  54. Covar RA, Szefler SJ, Martin RJ, et al.: Relations between exhaled nitric oxide and measures of disease activity among children with mild-to-moderate asthma. J Pediatr 2003, 142:469–475.

    Article  PubMed  CAS  Google Scholar 

  55. Dupont LJ, Demedts MG, Verleden GM: Prospective evaluation of the validity of exhaled nitric oxide for the diagnosis of asthma. Chest 2003, 123:751–756.

    Article  PubMed  CAS  Google Scholar 

  56. Tsukahara H, Miyanomae T, Sudo M: Urinary nitrite/nitrate levels in children with bronchial asthma. Eur J Pediatr 1997, 156:667.

    PubMed  CAS  Google Scholar 

  57. Jang AS, Choi IS, Lee S, et al.: Nitric oxide metabolites in induced sputum: a marker of airway inflammation in asthmatic subjects. Clin Exp Allergy 1999, 29:1136–1142.

    Article  PubMed  CAS  Google Scholar 

  58. Formanek W, Inci D, Lauener RP, et al.: Elevated nitrite in breath condensates of children with respiratory disease. Eur Respir J 2002, 19:487–491.

    Article  PubMed  CAS  Google Scholar 

  59. Ichinose M, Sugiura H, Yamagata S, et al.: Increase in reactive nitrogen species production in chronic obstructive pulmonary disease airways. Am J Respir Crit Care Med 2000, 162:701–706.

    PubMed  CAS  Google Scholar 

  60. Wu W, Samoszuk MK, Comhair SA, et al.: Eosinophils generate brominating oxidants in allergen-induced asthma. J Clin Invest 2000, 105:1455–1463.

    Article  PubMed  CAS  Google Scholar 

  61. Heinecke JW: Eosinophil-dependent bromination in the pathogenesis of asthma. J Clin Invest 2000, 105:1331–1332.

    PubMed  CAS  Google Scholar 

  62. Antczak A, Montuschi P, Kharitonov S, et al.: Increased exhaled cysteinyl-leukotrienes and 8-isoprostane in aspirin-induced asthma. Am J Respir Crit Care Med 2002, 166:301–306.

    Article  PubMed  Google Scholar 

  63. Baraldi E, Carraro S, Alinovi R, et al.: Cysteinyl leukotrienes and 8-isoprostane in exhaled breath condensate of children with asthma exacerbations. Thorax 2003, 58:505–509.

    Article  PubMed  CAS  Google Scholar 

  64. Paredi P, Kharitonov SA, Barnes PJ: Elevation of exhaled ethane concentration in asthma. Am J Respir Crit Care Med 2000, 162:1450–1454.

    PubMed  CAS  Google Scholar 

  65. Mudway IS, Stenfors N, Blomberg A, et al.: Differences in basal airway antioxidant concentrations are not predictive of individual responsiveness to ozone: a comparison of healthy and mild asthmatic subjects. Free Radic Biol Med 2001, 31:962–974.

    Article  PubMed  CAS  Google Scholar 

  66. Smith LJ, Houston M, Anderson J: Increased levels of glutathione in bronchoalveolar lavage fluid from patients with asthma. Am Rev Respir Dis 1993, 147:1461–1464.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowler, R.P. Oxidative stress in the pathogenesis of asthma. Curr Allergy Asthma Rep 4, 116–122 (2004). https://doi.org/10.1007/s11882-004-0056-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-004-0056-7

Keywords

Navigation