Abstract
Asthma affects 5% to 10% of the population of the United States. In asthmatics, oxidative stress occurs not only as a result of inflammation but also from environmental exposure to air pollution. The specific localization of antioxidants in the lung and the adaptive changes during asthma underscore the importance of oxidative stress, and therapeutic interventions that decrease exposure to environmental reactive oxygen species or augment endogenous antioxidant defenses might be beneficial as adjunctive therapies in asthmatic patients.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References and Recommended Reading
Lemanske RF Jr, Busse WW: 6. Asthma. J Allergy Clin Immunol 2003, 111(Suppl2):S502-S519.
Mannino DM, Homa DM, Akinbami LJ, et al.: Surveillance for asthma: United States, 1980–1999. MMWR Surveill Summ 2002, 51:1–13.
Andreadis AA, Hazen SL, Comhair SA, Erzurum SC: Oxidative and nitrosative events in asthma. Free Radic Biol Med 2003, 35:213–225. An exhaustive and current review of the role of ROS/RNS in asthma.
Bowler RP, Crapo JD: Oxidative stress in airways: Is there a role for extracellular superoxide dismutase? Am J Respir Crit Care Med 2002, 166(12 Pt 2):S38-S43.
Halliwell B, Gutteridge JMC: Free radicals in biology and medicine. Oxford, England: Oxford University Press; 1999.The bible of oxidative stress in biology.
Evans P, Lyras L, Halliwell B: Measurement of protein carbonyls in human brain tissue. Methods Enzymol 1999, 300:145–156.
Azumi H, Inoue N, Takeshita S, et al.: Expression of NADH/ NADPH oxidase p22phox in human coronary arteries. Circulation 1999, 100:1494–1498.
Thannickal VJ, Fanburg BL: Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 2000, 279:L1005-L1028. The role of ROS in cell signaling is an emerging field. This review summarizes the potential mechanisms by which ROS affects signaling pathways.
McConnell R, Berhane K, Gilliland F, et al.: Asthma in exercising children exposed to ozone: a cohort study. Lancet 2002, 359:386–391.
Sanders SP, Zweier JL, Harrison SJ, et al.: Spontaneous oxygen radical production at sites of antigen challenge in allergic subjects. Am J Respir Crit Care Med 1995, 151:1725–1733.
Jarjour NN, Calhoun WJ: Enhanced production of oxygen radicals in asthma. J Lab Clin Med 1994, 123:131–136.
Calhoun WJ, Reed HE, Moest DR, Stevens CA: Enhanced superoxide production by alveolar macrophages and air-space cells, airway inflammation, and alveolar macrophage density changes after segmental antigen bronchoprovocation in allergic subjects. Am Rev Respir Dis 1992, 145:317–325.
Nadeem A, Chhabra SK, Masood A, Raj HG: Increased oxidative stress and altered levels of antioxidants in asthma. J Allergy Clin Immunol 2003, 111:72–78.
Vachier I, Damon M, Le Doucen C, et al.: Increased oxygen species generation in blood monocytes of asthmatic patients. Am Rev Respir Dis 1992, 146:1161–1166.
Hanazawa T, Kharitonov SA, Barnes PJ: Increased nitrotyrosine in exhaled breath condensate of patients with asthma. Am J Respir Crit Care Med 2000, 162:1273–1276.
MacPherson JC, Comhair SA, Erzurum SC, et al.: Eosinophils are a major source of nitric oxide-derived oxidants in severe asthma: characterization of pathways available to eosinophils for generating reactive nitrogen species. J Immunol 2001, 166:5763–5772.
Kaminsky DA, Mitchell J, Carroll N, et al.: Nitrotyrosine formation in the airways and lung parenchyma of patients with asthma. J Allergy Clin Immunol 1999, 104:747–754.
Aldridge RE, Chan T, van Dalen CJ, et al.: Eosinophil peroxidase produces hypobromous acid in the airways of stable asthmatics. Free Radic Biol Med 2002, 33:847–856.
Schock BC, Young IS, Brown V, et al.: Antioxidants and oxidative stress in BAL fluid of atopic asthmatic children. Pediatr Res 2003, 53:375–381.
Gaillard MC, Kilroe-Smith TA, Nogueira C, et al.: Alpha-1-protease inhibitor in bronchial asthma: phenotypes and biochemical characteristics. Am Rev Respir Dis 1992, 145:1311–1315.
Montuschi P, Corradi M, Ciabattoni G, et al.: Increased 8-isoprostane, a marker of oxidative stress, in exhaled condensate of asthma patients. Am J Respir Crit Care Med 1999, 160:216–220.
Baraldi E, Ghiro L, Piovan V, et al.: Increased exhaled 8-isoprostane in childhood asthma. Chest 2003, 124:25–31.
Wood LG, Fitzgerald DA, Gibson PG, et al.: Lipid peroxidation as determined by plasma isoprostanes is related to disease severity in mild asthma. Lipids 2000, 35:967–974.
Nijkamp FP, Henricks PA: Receptors in airway disease: betaadrenoceptors in lung inflammation. Am Rev Respir Dis 1990, 141:S145-S150.
Katsumata U, Miura M, Ichinose M, et al.: Oxygen radicals produce airway constriction and hyperresponsiveness in anesthetized cats. Am Rev Respir Dis 1990, 141:1158–1161.
Stewart RM, Weir EK, Montgomery MR, Niewoehner DE: Hydrogen peroxide contracts airway smooth muscle: a possible endogenous mechanism. Respir Physiol 1981, 45:333–342.
Wright DT, Fischer BM, Li C, et al.: Oxidant stress stimulates mucin secretion and PLC in airway epithelium via a nitric oxide-dependent mechanism. Am J Physiol 1996, 271:L854-L861.
Sadeghi-Hashjin G, Folkerts G, Henricks PA, et al.: Peroxynitrite induces airway hyperresponsiveness in guinea pigs in vitro and in vivo. Am J Respir Crit Care Med 1996, 153:1697–1701.
Marshall HE, Stamler JS: NO waiting to exhale in asthma. Am J Respir Crit Care Med 2000, 161:685–687.
Su WY, Folz R, Chen JS, et al.: Extracellular superoxide dismutase mRNA expressions in the human lung by in situ hybridization. Am J Respir Cell Mol Biol 1997, 16:162–170.
Oury TD, Chang LY, Marklund SL, et al.: Immunocytochemical localization of extracellular superoxide dismutase in human lung. Lab Invest 1994, 70:889–898.
Harrison DJ, Cantlay AM, Rae F, et al.: Frequency of glutathione S-transferase M1 deletion in smokers with emphysema and lung cancer. Hum Exp Toxicol 1997, 16:356–360.
Chang LY, Crapo JD: Inhibition of airway inflammation and hyperreactivity by an antioxidant mimetic. Free Radic Biol Med 2002, 33:379–386.
Corradi M, Folesani G, Andreoli R, et al.: Aldehydes and glutathione in exhaled breath condensate of children with asthma exacerbation. Am J Respir Crit Care Med 2003, 167:395–359.
Dauletbaev N, Rickmann J, Viel K, et al.: Glutathione in induced sputum of healthy individuals and patients with asthma. Thorax 2001, 56:13–18.
Vural H, Uzun K: Serum and red blood cell antioxidant status in patients with bronchial asthma. Can Respir J 2000, 7:476–480.
Powell CV, Nash AA, Powers HJ, Primhak RA: Antioxidant status in asthma. Pediatr Pulmonol 1994, 18:34–38.
Kelly FJ, Mudway I, Blomberg A, et al.: Altered lung antioxidant status in patients with mild asthma. Lancet 1999, 354:482–483.
Aderele WI, Ette SI, Oduwole O, Ikpeme SJ: Plasma vitamin C (ascorbic acid) levels in asthmatic children. Afr J Med Med Sci 1985, 14:115–120.
Olusi SO, Ojutiku OO, Jessop WJ, Iboko MI: Plasma and white blood cell ascorbic acid concentrations in patients with bronchial asthma. Clin Chim Acta 1979, 92:161–166.
Ting S, Mansfield LE, Yarbrough J: Effects of ascorbic acid on pulmonary functions in mild asthma. J Asthma 1983, 20:39–42.
Kalayci O, Besler T, Kilinc K, et al.: Serum levels of antioxidant vitamins (alpha tocopherol, beta carotene, and ascorbic acid) in children with bronchial asthma. Turk J Pediatr 2000, 42:17–21.
Jorres R, Nowak D, Magnussen H: The effect of ozone exposure on allergen responsiveness in subjects with asthma or rhinitis. Am J Respir Crit Care Med 1996, 153:56–64.
Romieu I, Sienra-Monge JJ, Ramirez-Aguilar M, et al.: Antioxidant supplementation and lung functions among children with asthma exposed to high levels of air pollutants. Am J Respir Crit Care Med 2002, 166:703–709.
Cohen HA, Neuman I, Nahum H: Blocking effect of vitamin C in exercise-induced asthma. Arch Pediatr Adolesc Med 1997, 151:367–370.
Bylin G, Hedenstierna G, Lagerstrand L, Wagner PD: No influence of acetylcysteine on gas exchange and spirometry in chronic asthma. Eur J Respir Dis 1987, 71:102–107.
Rahman I, Morrison D, Donaldson K, MacNee W: Systemic oxidative stress in asthma, COPD, and smokers. Am J Respir Crit Care Med 1996, 154:1055–1060.
Teramoto S, Shu CY, Ouchi Y, Fukuchi Y: Increased spontaneous production and generation of superoxide anion by blood neutrophils in patients with asthma. J Asthma 1996, 33:149–155.
Sedgwick JB, Geiger KM, Busse WW: Superoxide generation by hypodense eosinophils from patients with asthma. Am Rev Respir Dis 1990, 142:120–125.
Loukides S, Bouros D, Papatheodorou G, et al.: The relationships among hydrogen peroxide in expired breath condensate, airway inflammation, and asthma severity. Chest 2002, 121:338–346.
Emelyanov A, Fedoseev G, Abulimity A, et al.: Elevated concentrations of exhaled hydrogen peroxide in asthmatic patients. Chest 2001, 120:1136–1139.
Ganas K, Loukides S, Papatheodorou G, et al.: Total nitrite/ nitrate in expired breath condensate of patients with asthma. Respir Med 2001, 95:649–654.
Kharitonov SA, Barnes PJ: Biomarkers of some pulmonary diseases in exhaled breath. Biomarkers 2002, 7:1–32.
Covar RA, Szefler SJ, Martin RJ, et al.: Relations between exhaled nitric oxide and measures of disease activity among children with mild-to-moderate asthma. J Pediatr 2003, 142:469–475.
Dupont LJ, Demedts MG, Verleden GM: Prospective evaluation of the validity of exhaled nitric oxide for the diagnosis of asthma. Chest 2003, 123:751–756.
Tsukahara H, Miyanomae T, Sudo M: Urinary nitrite/nitrate levels in children with bronchial asthma. Eur J Pediatr 1997, 156:667.
Jang AS, Choi IS, Lee S, et al.: Nitric oxide metabolites in induced sputum: a marker of airway inflammation in asthmatic subjects. Clin Exp Allergy 1999, 29:1136–1142.
Formanek W, Inci D, Lauener RP, et al.: Elevated nitrite in breath condensates of children with respiratory disease. Eur Respir J 2002, 19:487–491.
Ichinose M, Sugiura H, Yamagata S, et al.: Increase in reactive nitrogen species production in chronic obstructive pulmonary disease airways. Am J Respir Crit Care Med 2000, 162:701–706.
Wu W, Samoszuk MK, Comhair SA, et al.: Eosinophils generate brominating oxidants in allergen-induced asthma. J Clin Invest 2000, 105:1455–1463.
Heinecke JW: Eosinophil-dependent bromination in the pathogenesis of asthma. J Clin Invest 2000, 105:1331–1332.
Antczak A, Montuschi P, Kharitonov S, et al.: Increased exhaled cysteinyl-leukotrienes and 8-isoprostane in aspirin-induced asthma. Am J Respir Crit Care Med 2002, 166:301–306.
Baraldi E, Carraro S, Alinovi R, et al.: Cysteinyl leukotrienes and 8-isoprostane in exhaled breath condensate of children with asthma exacerbations. Thorax 2003, 58:505–509.
Paredi P, Kharitonov SA, Barnes PJ: Elevation of exhaled ethane concentration in asthma. Am J Respir Crit Care Med 2000, 162:1450–1454.
Mudway IS, Stenfors N, Blomberg A, et al.: Differences in basal airway antioxidant concentrations are not predictive of individual responsiveness to ozone: a comparison of healthy and mild asthmatic subjects. Free Radic Biol Med 2001, 31:962–974.
Smith LJ, Houston M, Anderson J: Increased levels of glutathione in bronchoalveolar lavage fluid from patients with asthma. Am Rev Respir Dis 1993, 147:1461–1464.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Bowler, R.P. Oxidative stress in the pathogenesis of asthma. Curr Allergy Asthma Rep 4, 116–122 (2004). https://doi.org/10.1007/s11882-004-0056-7
Issue Date:
DOI: https://doi.org/10.1007/s11882-004-0056-7