Annals of Dyslexia

, Volume 65, Issue 1, pp 1–23 | Cite as

Greater functional connectivity between reading and error-detection regions following training with the reading acceleration program in children with reading difficulties

  • Tzipi Horowitz-KrausEmail author
  • Scott K. Holland


The Reading Acceleration Program is a computerized program that improves reading and the activation of the error-detection mechanism in individuals with reading difficulty (RD) and typical readers (TRs). The current study aims to find the neural correlates for this effect in English-speaking 8–12-year-old children with RD and TRs using a functional connectivity analysis. Functional magnetic resonance imaging data were collected during a lexical decision task before and after 4 weeks of training with the program, together with reading and executive functions measures. Results indicated improvement in reading, visual attention, and speed of processing in children with RD. Following training, greater functional connectivity was observed between the left fusiform gyrus and the right anterior cingulate cortex in children with RD and between the left fusiform gyrus and the left anterior cingulate cortex in TRs. The change in functional connectivity after training was correlated with increased behavioral scores for word reading and visual attention in both groups. The results support previous findings of improved monitoring and mental lexicon after training with the Reading Acceleration Program in children with RD and TRs. The differences in laterality of the anterior cingulate cortex in children with RD and the presumable role of the cingulo-opercular control network in language processing are discussed.


Anterior cingulate cortex Cingulo-opercular network Connectivity Dyslexia Fluency Functional MRI Reading Acceleration Program Reading 



The study was supported by the University of Cincinnati Grant and the Fulbright Foundation. The Reading Acceleration Program was developed by Prof. Zvia Breznitz and was provided by the Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Israel. The authors thank J. Denise Wetzel, CCHMC Medical Writer, for editing the manuscript.


  1. Altemeier, L. E., Abbott, R. D., & Berninger, V. W. (2008). Executive functions for reading and writing in typical literacy development and dyslexia. Journal of Clinical and Experimental Neuropsychology, 30, 588–606. doi: 10.1080/13803390701562818.CrossRefGoogle Scholar
  2. Andersen, A. (2002). Assessment and development of executive function (EF) during childhood. Child Neuropsychology: A Journal on Normal and Abnormal Development in Childhood and Adolescence, 8, 71–82. doi: 10.1076/chin. Scholar
  3. Anwander, A., Tittgemeyer, M., von Cramon, D. Y., Friederici, A. D., & Knosche, T. R. (2007). Connectivity-based parcellation of Broca’s area. Cerebral Cortex, 17, 816–825.CrossRefGoogle Scholar
  4. Baddeley, A. (1986). Modularity, mass-action and memory. Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 38, 527–533. doi: 10.1080/146407486 08401613.CrossRefGoogle Scholar
  5. Baria, A. T., Baliki, M. N., Parrish, T., & Apkarian, A. V. (2011). Anatomical and functional assemblies of brain BOLD oscillations. Journal of Neuroscience, 31, 7910–7919. doi: 10.1523/JNEUROSCI. 1296-11.2011.CrossRefGoogle Scholar
  6. Benjamin, C. F. A., & Gaab, N. (2012). What’s the Story? The Tale of Reading Fluency Told at Speed. Organization of Human Brain Mapping (HBM). 33, 2572–2585.Google Scholar
  7. Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402, 179–181.CrossRefGoogle Scholar
  8. Bremner, J. D., Vythilingam, M., Vermetten, E., Vaccarino, E., & Charney, D. S. (2004). Deficits in hippocampal and anterior cingulate functioning during verbal declarative memory encoding in midlife major depression. The American Journal of Psychiatry, 161, 637–664.CrossRefGoogle Scholar
  9. Breznitz, Z. (1987). Increasing first graders’ reading accuracy and comprehension by accelerating their reading rate. Journal of Educational Psychology, 79, 236–242.CrossRefGoogle Scholar
  10. Breznitz, Z. (1992). Verbal indicators of depression. Journal of General Psychology, 119, 351–363.Google Scholar
  11. Breznitz, Z. (1997a). Enhancing the reading of dyslexic children by reading acceleration and auditory masking. Journal of Educational Psychology, 89, 103–113.CrossRefGoogle Scholar
  12. Breznitz, Z. (1997b). Effects of accelerated reading rate on memory for text among dyslexic readers. Journal of Educational Psychology, 89, 289–297.CrossRefGoogle Scholar
  13. Breznitz, Z. (2006). Fluency in reading: synchronization of processes. Mahwah, NJ: Erlbaum.Google Scholar
  14. Breznitz, Z., & Berman, L. (2003). The underlying factors of word reading rate. Educational Psychology Review, 15, 247–265.CrossRefGoogle Scholar
  15. Breznitz, Z., & Leikin, M. (2000). Effects of accelerated reading rate on processing words’ syntactic functions by normal and dyslexic readers: event related potentials evidence. Journal of Genetic Psychology, 162, 276–296.CrossRefGoogle Scholar
  16. Breznitz, Z., & Misra, M. (2003). Speed of processing of the visual–orthographic and auditory– phonological systems in adult dyslexics: the contribution of ‘‘asynchrony” to word recognition deficits. Brain Lang, 85, 486–502.Google Scholar
  17. Breznitz, Z., & Bloch, B. (2008). The Reading Acceleration Program (RAP). University of Haifa, Israel: The Edmond J. Safra Brain Research Center for the Study of Learning Disabilities.
  18. Breznitz, Z., & Share, D. L. (1992). The effect of accelerated reading rate on memory for text. Journal of Educational Psychology, 84, 193–200.Google Scholar
  19. Breznitz, Z., Shaul, S., Horowitz-Kraus, T., Sela, I., Nevat, M., & Karni, A. (2013). Enhanced reading by training with imposed time-constraint in typical and dyslexic adults. Nature Communications, 4, 1486. doi: 10.1038/ncomms2488.
  20. Brosnan, M., Demetre, J., Hamill, S., Robson, K., Shepherd, H., & Cody, G. (2002). Executive functioning in adults and children with developmental dyslexia. Neuropsychologia, 40, 2144–2155. doi: 10.1016/S0028-3932(02)00046-5.CrossRefGoogle Scholar
  21. Brown, L., Sherbenou, R., & Johnsen, S. (1997). Test of nonverbal intelligence (3rd ed.). Austin, TX: Pro-Ed.Google Scholar
  22. Byars, A. W., Holland, S. K., Strawsburg, R. H., Bommer, W., Dunn, R. S., Schmithorst, V. J., et al. (2002). Practical aspects of conducting large-scale functional magnetic resonance imaging studies in children. Journal of Child Neurology, 17, 8858–8890.CrossRefGoogle Scholar
  23. Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280, 747–749.CrossRefGoogle Scholar
  24. Conners, C. K. (1989). Conners rating scales’ manual. North Towonada NY: Multihealth System.Google Scholar
  25. Crespo-Facorro, B., Kim, J., Andreasen, N. C., O’Leary, D. S., Wiser, A. K., Bailey, J. M., et al. (1999). Human frontal cortex: an MRI-based parcellation method. NeuroImage, 10, 500–519.CrossRefGoogle Scholar
  26. De Jong, P. F. (1998). Working memory deficits of reading disabled children. Journal of Experimental Child Psychology, 70, 75–96.CrossRefGoogle Scholar
  27. Dellis, D. C., Kaplan, E., & Kramer, J. H. (2001). Delis-Kaplan executive function system. San Antonio, TX: Psychological Corporation.Google Scholar
  28. Dosenbach, N. U. F., Fair, D. A., Cohen, A. L., Schlaggar, B. L., & Peterson, S. E. (2008). A dual-networks architecture of top-down control. Trends in Cognitive Sciences, 12, 99–105.CrossRefGoogle Scholar
  29. Eden, G. F., Jones, K. M., Cappell, K., Gareau, L., Wood, F. B., Zeffiro, T. A., et al. (2004). Neural changes following clinical study remediation in adult developmental dyslexia. Neuron, 44, 411–422.CrossRefGoogle Scholar
  30. Facoetti, A., Paganoni, P., Turatto, M., Marzola, V., & Mascetti, G. G. (2000). Visual-spatial attention in developmental dyslexia. Cortex, 36, 109–123.CrossRefGoogle Scholar
  31. Falkenstein, M., Hohnsbein, J., Hoormann, J., & Blanke, L. (1991). Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalography and Clinical Neurophysiology, 78(6), 447–455. doi: 10.1016/0013-4694(91)90062–9.CrossRefGoogle Scholar
  32. Fletcher, J. (2009). Dyslexia: the evolution of a scientific concept. Journal of the International Neuropsychological Society, 15, 501–508.CrossRefGoogle Scholar
  33. Garavan, H., Ross, T. J., & Stein, E. A. (1999). Right hemispheric dominance of inhibitory control: an event-related functional MRI study. Proceedings of the National Academy of Sciences of the United States of America, 96, 8301–8306.CrossRefGoogle Scholar
  34. Gooch, D., Snowling, M., & Hulme, C. (2011). Time perception, phonological skills and executive function in children with dyslexia and/or ADHD symptoms. Journal of Child Psychology and Psychiatry, 52, 195–203. doi: 10.1111/j.1469- 7610.2010.02312.CrossRefGoogle Scholar
  35. Helland, T., & Asbjornsen, A. (2000). Executive functions in dyslexia. Child Neuropsychology, 6, 37–48. doi: 10.1076/0929-7049(200003)6:1;1-B;FT037.CrossRefGoogle Scholar
  36. Hirshorn, E. A., & Thompson-Schill, S. L. (2006). Role of the left inferior frontal gyrus in covert word retrieval: neural correlates of switching during verbal fluency. Neuropsychologia, 44, 2547–2557.CrossRefGoogle Scholar
  37. Horowitz-Kraus, T., & Breznitz, Z. (2010). Less is more: the ability of the error-detection system to change after training among dyslexics. Barcelona, Spain: Organization of Human Brain Mapping (HBM).Google Scholar
  38. Horowitz-Kraus, T. (2012). Pinpointing the deficit in executive functions in teenage dyslexic readers: an ERP study using the Wisconsin Card Sorting Test. Journal of Learning Disabilities, 47, 208–223.CrossRefGoogle Scholar
  39. Horowitz-Kraus, T., Vannest, J. J., Kadis, D., Cicchino, N., Wang, Y. Y., & Holland, S. K. (2015). Reading acceleration training changes brain circuitry in children with reading difficulties. Brain and Behavior, 4(6), 886–902. Google Scholar
  40. Horowitz-Kraus, T., & Breznitz, Z. (2013). Can reading rate acceleration training improve executive functions in adolescents with reading difficulties and in typical readers. Brain Research, 1544, 1–14.CrossRefGoogle Scholar
  41. Horowitz-Kraus, T., Cicchino, N., Amiel, M., Holland, S. K., & Breznitz, Z. (2014). Reading improvement in English and Hebrew-speaking children with reading difficulties after reading acceleration training. Annals of Dyslexia. doi: 10.1007/s11881-014-0093-4.Google Scholar
  42. Horowitz-Kraus, T., Vannest, J. J., Cicchino, N., Kay, B., Wang, Y., Breznitz, Z., et al. (2013). Can we train the dyslexic’s brain to read like a typical readers? An fMRI study. Seattle, USA: Organization of Human Brain Mapping (OHBM).Google Scholar
  43. Houde, O., Rossi, S., Lubin, A., & Joliot, M. (2010). Mapping numerical processing, reading, and executive functions in the developing brain: an fMRI meta-analysis of 52 studies including 842 children. Developmental Science, 13, 876–885.CrossRefGoogle Scholar
  44. Hye Youn Park, H. Y., Hwang, J. Y., Jung, W. H., Shin, N. Y., Shim, G., Jang, J. H., et al. (2013). Altered asymmetry of the anterior cingulate cortex in subjects at genetic high risk for psychosis. Schizophrenia Research, 150, 512–518.CrossRefGoogle Scholar
  45. Korinth, S. P., Dimigen, O., Sommer, W., & Breznitz, Z. (2009). Eye movements altered through training: Effects of the reading acceleration program. Poster presented at the Edmond J. Safra Inaugural Conference, Haifa, Israel.Google Scholar
  46. Langer, N., Benjamin, C., Minas, J., & Gaab, N. (2013). The Neural Correlates of Reading Fluency Deficits in Children, Cereb. Cortex. doi: 10.1093/cercor/bht33
  47. Levy, B. J., & Anderson, M. C. (2002). Inhibitory processes and the control of memory retrieval. Trends in Cognitive Sciences, 6, 299–305.CrossRefGoogle Scholar
  48. Luria, A. R. (1973). The working brain. New York, NY: Basic.Google Scholar
  49. Lutcke, H., & Frahm, J. (2008). Lateralized anterior cingulate function during error processing and conflict monitoring as revealed by high-resolution fMRI. Cerebral Cortex, 18, 508–515. doi: 10.1093/cercor/bhm090.CrossRefGoogle Scholar
  50. Manly, T., Robertson, I. H., Anderson, V., & Nimmo-Smith, I. (1999). TEA-Ch: the test of everyday attention for children manual. Bury St. Edmunds, UK: Thames Valley Test Company.Google Scholar
  51. Masur, D., Shinar, S., Cnaan, A., Clark, P., Wang, J., Weiss, E. F., et al. (2013). Pretreatment cognitive deficits and treatment effects on attention in childhood absence epilepsy. Neurology, 81, 1572–1580.CrossRefGoogle Scholar
  52. Menghini, D., Finzi, A., Benassic, M., Bolzanic, R., Facoettid, A., Giovagnolic, S., et al. (2010). Different underlying neurocognitive deficits in developmental dyslexia: a comparative study. Neuropsychologia, 48, 863–872. doi: 10.1016/j.neuropsychologia.2009.11.003.CrossRefGoogle Scholar
  53. Neta, M., Schlaggar, B. L., & Peterson, S. E. (2014). Separable responses to error, ambiguity, and reaction time in cingulo-opercular task control regions. NeuroImage, 99, 59–68.CrossRefGoogle Scholar
  54. Niedo, J., Lee, Y., Breznitz, B., & Berninger, V. (2013). Response to silent reading rate training at transition to silent reading for fourth graders with silent reading rate disabilities. Learning Disability Quarterly. doi: 10.1177/0731948713507263.
  55. Reiter, A., Tucha, O., & Lange, K. W. (2004). Executive functions in children with dyslexia. Dyslexia, 11, 116–131. doi: 10.1002/dys.28.CrossRefGoogle Scholar
  56. Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306, 443–447.CrossRefGoogle Scholar
  57. Ridderinkhof, K. R., van den Wildenberg, W. P. M., Segalowitz, S. J., & Carter, C. S. (2004). Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward based learning. Brain and Cognition, 56, 129–140.CrossRefGoogle Scholar
  58. Shaywitz, S. E., & Shaywitz, B. A. (2008). Paying attention to reading: the neurobiology of reading and dyslexia. Development and Psychopathology, 20, 1329–1349.CrossRefGoogle Scholar
  59. Shaywitz, S. E., Shaywitz, B. A., Fulbright, R. K., Skudlarski, P., Mencl, W. E., Constable, R. T., et al. (2003). Neural systems for compensation and persistence: Young adult outcome of childhood reading disability. Biological Psychiatry, 54, 25–33.Google Scholar
  60. Snellings, P., van der Leij, A., de Jong, P. F., & Block, H. (2009). Enhancing reading fluency and comprehension of children with learning disabilities in an orthographically transparent language. Journal of Learning Disabilities, 42, 1–15.CrossRefGoogle Scholar
  61. Sowell, E. R., Thompson, P. M., Holmes, C. J., Jernigan, T. L., & Toga, A. W. (1999). In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nature Neuroscience, 2, 859–861. doi: 10.1038/13154.CrossRefGoogle Scholar
  62. Stephan, K. E., Marshall, J. C., Friston, K. J., Rowe, J. B., Ritzl, A., Zilles, K., et al. (2003). Lateralized cognitive processes and lateralized task control in the human brain. Science, 301, 384–386.CrossRefGoogle Scholar
  63. Taylor, S. F., Martis, B., Fitzgerald, K. D., Welsh, R. C., Abelson, J. L., Liberzon, I., et al. (2006). Medial frontal cortex activity and loss-related responses to errors. Journal of Neuroscience, 26, 4063–4070.CrossRefGoogle Scholar
  64. Tiffin-Richards, M. C., Hasselhorn, M., Woerner, W., Rothenberger, A., & Banaschewski, T. (2008). Executive functions in children with chronic tic disorders with/without ADHD: new insights. Journal of Neural Transmission, 115, 227–234. doi: 10.1007/s00702-007-0816-3.CrossRefGoogle Scholar
  65. Torgesen, J. K., Wagner, R. K., & Rashotte, C. A. (1999). Test of word-reading efficiency (TOWRE). Austin, TX: Pro-Ed.Google Scholar
  66. Ullsperger, M., & von Cramon, D. Y. (2004). Neuroimaging of performance monitoring: error detection and beyond. Cortex, 40, 593–604.CrossRefGoogle Scholar
  67. van der Mark, S., Klaver, P., Bucher, K., Maurer, U., Schulz, E., Brem, S., et al. (2011). The left occipitotemporal system in reading: disruption of focal fMRI connectivity to left inferior frontal and inferior parietal language areas in children with dyslexia. NeuroImage, 54, 2426–2436.CrossRefGoogle Scholar
  68. van der Sluis, S., de Jong, P. F., & van der Leij, A. (2004a). Inhibition and shifting in children with learning deficits in arithmetic and reading. Journal of Experimental Child Psychology, 87, 239–266. doi: 10.1016/j.jecp.2003.12.002.CrossRefGoogle Scholar
  69. van der Sluis, S., de Jong, P. F., & van der Leij, A. (2004b). Executive functioning in children, and its relations with reasoning, reading and arithmetic. Intelligence, 35, 427–449.CrossRefGoogle Scholar
  70. Vigneau, M., Beaucousin, V., Herve, P. Y., Duffau, H., Crivello, F., Houde, O., et al. (2006). Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. NeuroImage, 30, 1414–1432.CrossRefGoogle Scholar
  71. Vogel, A. C., Petersen, S. E., & Schlaggar, B. L. (2014). The VWFA: it’s not just for words anymore. Frontiers in Human Neuroscience, 8, 1–10.CrossRefGoogle Scholar
  72. Wagner, R. K., Torgesen, J. K., & Rashotte, C. A. (1999). Comprehensive test of phonological processing (CTOPP). Austin, TX: Pro-Ed.Google Scholar
  73. Wechsler, D. (1999). Wechsler Intelligence Scale for Children—Third Edition (WAIS-III). New York: Psychological Corporation.Google Scholar
  74. Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity, 2, 125–141. doi: 10.1089/brain.2012.0073.CrossRefGoogle Scholar
  75. Wiederholt, J. L., & Bryant, B. R. (1992). Gray oral reading test (3rd ed.). Austin, TX: Pro-Ed.Google Scholar
  76. Woodcock, R. W., & Johnson, M. B. (1989). Woodcock-Johnson Psycho-Educational Battery—Revised (WJ-R). Allen, TX: Developmental Learning Materials.Google Scholar
  77. Yeung, N., Cohen, J. D., Botvinick, M. M. (2004). The neural basis of error detection: conflictGoogle Scholar
  78. Yücel, M., Stuart, G. W., Maruff, P., Velakoulis, D., Crowe, S. F., Savage, G., et al. (2001). Hemispheric and gender-related differences in the gross morphology of the anterior cingulate/paracingulate cortex in normal volunteers: an MRI morphometric study. Cerebral Cortex, 11, 17–25. doi: 10.1093/cercor/11.1.17.CrossRefGoogle Scholar
  79. Ziegler, J. C., & Goswami, U. (2005). Reading acquisition, developmental dyslexia, and skilled reading across languages: a psycholinguistic grain size theory. Psychological Bulletin, 131, 3–29.CrossRefGoogle Scholar

Copyright information

© The International Dyslexia Association 2015

Authors and Affiliations

  1. 1.Pediatric Neuroimaging Research ConsortiumCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  2. 2.Reading and Literacy Discovery CenterCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  3. 3.Pediatric Neuroimaging Research ConsortiumCincinnati Children’s Research FoundationCincinnatiUSA

Personalised recommendations