Computer-based learning of spelling skills in children with and without dyslexia

Abstract

Our spelling training software recodes words into multisensory representations comprising visual and auditory codes. These codes represent information about letters and syllables of a word. An enhanced version, developed for this study, contains an additional phonological code and an improved word selection controller relying on a phoneme-based student model. We investigated the spelling behavior of children by means of learning curves based on log-file data of the previous and the enhanced software version. First, we compared the learning progress of children with dyslexia working either with the previous software (n = 28) or the adapted version (n = 37). Second, we investigated the spelling behavior of children with dyslexia (n = 37) and matched children without dyslexia (n = 25). To gain deeper insight into which factors are relevant for acquiring spelling skills, we analyzed the influence of cognitive abilities, such as attention functions and verbal memory skills, on the learning behavior. All investigations of the learning process are based on learning curve analyses of the collected log-file data. The results evidenced that those children with dyslexia benefit significantly from the additional phonological cue and the corresponding phoneme-based student model. Actually, children with dyslexia improve their spelling skills to the same extent as children without dyslexia and were able to memorize phoneme to grapheme correspondence when given the correct support and adequate training. In addition, children with low attention functions benefit from the structured learning environment. Generally, our data showed that memory sources are supportive cognitive functions for acquiring spelling skills and for using the information cues of a multi-modal learning environment.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Adams, M. J. (1990). Beginning to read: Thinking and learning about print. Cambridge: MIT Press.

    Google Scholar 

  2. Akaike, H. (1974). A new look at the statistical model identification. Automatic Control, IEEE Transactions on, 19, 716–723.

    Article  Google Scholar 

  3. Annett, M. (1970). A classification of hand preferences by association analysis. British Journal of Psychology, 61, 303–321.

    Article  Google Scholar 

  4. Baddeley, A., Gathercole, S., & Papagno, C. (1998). The phonological loop as a language learning device. Psychological Review, 105(1), 158–173.

    Article  Google Scholar 

  5. Baldeweg, T., Richardson, A., Watkins, S., Foale, C., & Gruzelier, J. (1999). Impaired auditory frequency discrimination in dyslexia detected with mismatch evoked potentials. Annals of Neurology, 45(4), 495–503.

    Article  Google Scholar 

  6. Baschera, G. M., & Gross, M. (2009). A Phoneme-Based Student Model for Adaptive Spelling Training. Paper presented at the In Proceedings of Artificial Intelligence in Education.

  7. Berninger, V. W., Abbott, R. D., Zook, D., Ogier, S., Lemos-Britton, Z., & Brooksher, R. (1999). Early intervention for reading disabilities. Journal of Learning Disabilities, 32(6), 491–503.

    Article  Google Scholar 

  8. Bodén, M., & Bodén, M. (2007). Evolving spelling exercises to suit individual student needs. Applied Sort Computing, 7, 126–135.

    Article  Google Scholar 

  9. Bradley, L., & Bryant, P. E. (1983). Categorizing sounds and learning to read-a causal connection. Nature, 301, 419–421.

    Article  Google Scholar 

  10. Byrne, B. (1998). The foundation of literacy: The child’s acquistion of the alphabetic principle. East Sussex UK: Psychology Press.

    Google Scholar 

  11. Crespo Garcia, R. M., Delgado Kloos, C., & Castro Gil, M. (2008). Game based spelling learning. Paper presented at the 38th ASSEE/IEEE Frontiers in Education Conference. Saratoga Springs, NY.

  12. Drewe, E. A. (1975). Go-nogo learning after frontal lobe lesions in humans. Cortex, 11, 8–16.

    Google Scholar 

  13. Ecalle, J., Magnan, A., Bouchafa, H., & Gombert, J. E. (2009). Computer-based training with ortho-phonological units in dyslexic children: New investigations. Dyslexia, 15(3), 218–238.

    Article  Google Scholar 

  14. Farmer, M. E., & Klein, R. M. (1995). The evidence for a temporal processing deficit linked to dyslexia: A review. Psychonomic Bulletin & Review, 2, 460–493.

    Article  Google Scholar 

  15. Frith, U. (1985). Beneath the surface of developmental dyslexia surface dyslexia. In K. E. Patterson, J. C. Marshall, & M. Coltheart (Eds.), Neurophysiological and cognitive studies of phonological reading (pp. 301–327). London: Erlbaum.

    Google Scholar 

  16. Gascon, G., & Goodglass, H. (1970). Reading retardation and the information content of stimuli in paired associate learning. Cortex, 6(4), 417–429.

    Google Scholar 

  17. Gathercole, S. E., Alloway, T. P., Willis, C., & Adams, A.-M. (2006). Working memory in children with reading disabilities. Journal of Experimental Child Psychology, 93(3), 265–281.

    Article  Google Scholar 

  18. Goswami, U., Ziegler, J. C., & Richardson, U. (2005). The effects of spelling consistency on phonological awareness: A comparison of English and German. Journal of Experimental Child Psychology, 92(4), 345–365.

    Article  Google Scholar 

  19. Goyen, J. D., & Lyle, J. G. (1971). Effect of incentives upon retarded and normal readers on a visual-associated learning task. Journal of Experimental Child Psychology, 11(2), 274–280.

    Article  Google Scholar 

  20. Gross, M., & Voegeli, C. (2007). A multimedia framework for effective language training. Computers & Graphics, 31, 761–777.

    Google Scholar 

  21. Grund, M., Haug, G., Naumann, C. L., & Weinheim, B.-V. (1995). Diagnostischer Rechtschreibtest 5. Klasse. Weinheim: Beltz-Verlag.

    Google Scholar 

  22. Heathcote, A., Brown, S., & Mewhort, D. J. (2000). The power law repealed: The case for an exponential law of practice. Psychonomic Bulletin & Review, 7(2), 185–207.

    Article  Google Scholar 

  23. Hilte, M., & Reitsma, P. (2006). Spelling pronunciation and visual preview both facilitate learning to spell irregular words. Annals of Dyslexia, 56(2), 301–318.

    Article  Google Scholar 

  24. Hulme, C., Goetz, K., Gooch, D., Adams, J., & Snowling, M. J. (2007). Paired-associate learning, phoneme awareness, and learning to read. Journal of Experimental Child Psychology, 96(2), 150–166.

    Article  Google Scholar 

  25. Huss, M., Verney, J. P., Fosker, T., Mead, N., & Goswami, U. (2010). Music, rhythm, rise time perception and developmental dyslexia: Perception of musical meter predicts reading and phonology. Cortex, (In Press). Corrected Proof.

  26. Kast, M., Meyer, M., Vogeli, C., Gross, M., & Jancke, L. (2007). Computer-based multisensory learning in children with developmental dyslexia. Restorative Neurology and Neuroscience, 25(3–4), 355–369.

    Google Scholar 

  27. Kujala, T., Karma, K., Ceponiene, R., Belitz, S., Turkkila, P., Tervaniemi, M., et al. (2001). Plastic neural changes and reading improvement caused by audiovisual training in reading-impaired children. Proceedings of the National Academy of Sciences of the United States of America, 98(18), 10509–10514.

    Article  Google Scholar 

  28. Landerl, K., Wimmer, H., & Moser, E. (1997). Der Salzburger Lese- und Rechtschreibtest (SLRT). Bern: Verlag Hans Huber.

    Google Scholar 

  29. Lashley, K. S. (1951). The problem of serial order in behavior. In F. Beach, D. Hebb, C. Morgan, & H. Nissen (Eds.), The neuropsychology of Lashley 1960 (pp. 506–528). New York: McGraw-Hill.

    Google Scholar 

  30. Lehmann, S., & Murray, M. M. (2005). The role of multisensory memories in unisensory object discrimination. Brain Research. Cognitive Brain Research, 24(2), 326–334.

    Article  Google Scholar 

  31. Lezak, M. (1995). Neuropsychological assessment. New York: Oxford University Press.

    Google Scholar 

  32. Li, H., Shu, H., McBride-Chang, C., Liu, H. Y., & Xue, J. (2009). Paired associate learning in Chinese children with dyslexia. Journal of Experimental Child Psychology, 103(2), 135–151.

    Article  Google Scholar 

  33. Linder, M., & Grissemann, H. (2000). Zürcher Lesetest. Bern-Göttingen: Hogrefe-Verlag.

    Google Scholar 

  34. Livingstone, M., & Hubel, D. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science, 240(4853), 740–749.

    Article  Google Scholar 

  35. Lovegrove, W. J., Bowling, A., Badcock, D., & Blackwood, M. (1980). Specific reading disability: Differences in contrast sensitivity as a function of spatial frequency. Science, 210(4468), 439–440.

    Article  Google Scholar 

  36. Lux, S., Helmstaedter, C., & Elger, C. E. (1999). Normative study on the “Verbaler Lern- und Merkfa-higkeitstest” (VLMT): Diagnostica.

  37. Lyon, G., Shaywitz, S., & Shaywitz, B. (2003). A definition of dyslexia. Annals of Dyslexia, 53, 1–14.

    Article  Google Scholar 

  38. Messbauer, V. C., & de Jong, P. F. (2003). Word, nonword, and visual paired associate learning in Dutch dyslexic children. Journal of Experimental Child Psychology, 84(2), 77–96.

    Article  Google Scholar 

  39. Miller, P., & Kupfermann, A. (2009). The role of visual and phonological representations in the processing of written words by readers with diagnosed dyslexia: Evidence from a working memory task. Annals of Dyslexia, 59(1), 12–33.

    Article  Google Scholar 

  40. Muter, V., Hulme, C., Snowling, M. J., & Stevenson, J. (2004). Phonemes, rimes, vocabulary, and grammatical skills as foundations of early reading development: Evidence from a longitudinal study. Developmental Psychology, 40(5), 665–681.

    Article  Google Scholar 

  41. Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition and the law of practice. In J. R. Anderson (Ed.), Cognitive skills and their acquistion (pp. 1–55). Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  42. Nicolson, R. I., & Fawcett, A. J. (1990). Automaticity: A new framework for dyslexia research? Cognition, 35(2), 159–182.

    Article  Google Scholar 

  43. Nyberg, L., Habib, R., McIntosh, A. R., & Tulving, E. (2000). Reactivation of encoding-related brain activity during memory retrieval. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 11120–11124.

    Article  Google Scholar 

  44. Paulesu, E., Frith, U., Snowling, M., Gallagher, A., Morton, J., Frackowiak, R. S., et al. (1996). Is developmental dyslexia a disconnection syndrome? Evidence from PET scanning. Brain, 119(Pt 1), 143–157.

    Article  Google Scholar 

  45. Posner, M. I., & Presti, D. (1987). Selective attention and cognitive control. Trends in Neurosciences, 10, 12–17.

    Article  Google Scholar 

  46. Posner, M. I., & Rafal, R. D. (1987). Cognitive theories of attention and the rehabilitation of attentional deficits. In R. J. Meier, A. C. Benton, & L. Diller (Eds.), Neuropsychological rehabilitation. Edinburgh: Churchill Livingstone.

    Google Scholar 

  47. R Development Core Team. (2005). A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria: ISBN 3-900051-07-0.

  48. Ramus, F., Rosen, S., Dakin, S. C., Day, B. L., Castellote, J. M., White, S., et al. (2003). Theories of developmental dyslexia: Insights from a multiple case study of dyslexic adults. Brain, 126(4), 841–865.

    Article  Google Scholar 

  49. Re, A. M., Caeran, M., & Cornoldi, C. (2008). Improving expressive writing skills of children rated for ADHD symptoms. Journal of Learning Disabilities, 41(6), 535–544.

    Article  Google Scholar 

  50. Reed, M. A. (1989). Speech perception and the discrimination of brief auditory cues in reading disabled children. Journal of Experimental Child Psychology, 48(2), 270–292.

    Article  Google Scholar 

  51. Rudel, R. G. (1985). The definition of dyslexia: Language and motor deficits. In F. H. Duffy & H. Gschwind (Eds.), Dyslexia: A neuroscientific approach to clinical evaluation (pp. 33–53). Boston: Little Brown.

    Google Scholar 

  52. Schulte-Korne, G., Deimel, W., Bartling, J., & Remschmidt, H. (2004). Neurophysiological correlates of word recognition in dyslexia. Journal of Neural Transmission, 111(7), 971–984.

    Google Scholar 

  53. Shams, L., & Seitz, A. R. (2008). Benefits of multisensory learning. Trends in Cognitive Sciences, 12(11), 411–417.

    Article  Google Scholar 

  54. Snowling, M., Bishop, D. V., & Stothard, S. E. (2000). Is preschool language impairment a risk factor for dyslexia in adolescence? Journal of Child Psychology and Psychiatry, 41(5), 587–600.

    Article  Google Scholar 

  55. Stein, J., & Walsh, V. (1997). To see but not to read; the magnocellular theory of dyslexia. Trends in Neurosciences, 20(4), 147–152.

    Article  Google Scholar 

  56. Steingruber, H. J. (1971). Hand-Dominanz-Test (HDT). Göttingen: Verlag für Psychologie Dr. C. J. Hogrefe.

    Google Scholar 

  57. Tallal, P. (1980). Auditory temporal perception, phonics, and reading disabilities in children. Brain and Language, 9(2), 182–198.

    Article  Google Scholar 

  58. Tewes, U., & Rossmann, P. U. S. (1999). Hamburg-Wechsler-Intelligenztest für Kinder. Bern: Verlag Hans-Huber.

    Google Scholar 

  59. van Atteveldt, N. M., Formisano, E., Goebel, R., & Blomert, L. (2007). Top-down task effects overrule automatic multisensory responses to letter-sound pairs in auditory association cortex. Neuroimage, 36(4), 1345–1360.

    Article  Google Scholar 

  60. Vellutino, F. R., Fletcher, J. M., Snowling, M. J., & Scanlon, D. M. (2004). Specific reading disability (dyslexia): What have we learned in the past four decades? Journal of Child Psychology and Psychiatry, 45(1), 2–40.

    Article  Google Scholar 

  61. Vellutino, F. R., Steger, J. A., Harding, C. J., & Phillips, F. (1975). Verbal vs non-verbal paired-associates learning in poor and normal readers. Neuropsychologia, 13(1), 75–82.

    Article  Google Scholar 

  62. Wheeler, M. E., Petersen, S. E., & Buckner, R. L. (2000). Memory’s echo: Vivid remembering reactivates sensory-specific cortex. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 11125–11129.

    Article  Google Scholar 

  63. Wolff, P. H., Michel, G. F., & Ovrut, M. (1990). Rate variables and automatized naming in developmental dyslexia. Brain and Language, 39(4), 556–575.

    Article  Google Scholar 

  64. World Health Organization. (1993). ICD-10. The international classification of diseases. Geneva: World Health Organization.

    Google Scholar 

  65. Zimmermann, P., Gondan, M., & Fimm, B. (2002). KITAP Testbatterie zur Aufmerksamkeitsprüfung für Kinder. Herzogenrath: Psytest, Vera Fimm, Psychologisches Testsysteme.

    Google Scholar 

Download references

Acknowledgment

This project was supported by the Research Funding University of Zurich (56234102), the SNF-grant 320000–120661/1, and the CTI-grant 8970.1.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Monika Kast or Gian-Marco Baschera.

Additional information

The authors Monika Kast and Gian-Marco Baschera contributed equally to the manuscript.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kast, M., Baschera, G., Gross, M. et al. Computer-based learning of spelling skills in children with and without dyslexia. Ann. of Dyslexia 61, 177–200 (2011). https://doi.org/10.1007/s11881-011-0052-2

Download citation

Keywords

  • Acquiring spelling skills
  • Associative learning
  • Developmental dyslexia
  • Learning curves
  • Multisensory learning