Skip to main content
Log in

Magnetotropism: a tropic response of Candida guillemondii by the effect of the oscillating magnetic field of extremely low frequency

Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Extremely low frequency oscillating magnetic field (OMF-ELF) can stimulate the growth of pathogenic fungi. This work aims to assess the tropic response of a dimorphic pathogenic strain Candida guilliermondii by the effect of OMF-ELF. The pathogenic strain C. guilliermondii was isolated from an indoor environment and a brewing strain Saccharomyces cerevisiae was used as a positive control. OMF-ELF of 3 mT of 60 Hz for 2 h was applied to the cultures of both strains. After treatment, images were taken every 30 min for 24 h using Digital Image Processing (DIP) to determine the superficial growth rate of both strains and the length of the pseudohyphae, and the tropic response of C. guilliermondii. However, C. guilliermondii showed a tropic response depending on the OMF-ELF applied growing 3 to 60 times faster than the control strain, with a maximum value of 1.27 μm2/min between 1.5 and 2.5 h. C. guillermondii is resistant to OMF-ELF, a factor that stimulated its superficial growth rate and the elongation of its pseudohyphae, facilitated its cellular dimorphism, and oriented its ramifications to increase reproduction. This increase constitutes a risk to human health indoor environments where there is microbiological and electromagnetic contamination. Due to the use of DIP in real time with an adapted microculture technique, this is the first study to analyze “in vivo” magnetotropism of C. guilliermondii, as indicative of its invasive behavior for a possible infestation to humans exposed to this type of non-ionizing radiation in an indoor environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Anaya M, Barbará E, Padrón J et al (2015) Influencia del campo magnético sobre el crecimiento de microorganis mos patógenos aislados ambiente del Archivo Nacional de la República de Cuba. Bioméd 35:325–336. https://doi.org/10.7705/biomedica.v35i3.2569

    Article  Google Scholar 

  • Anaya M, Gámez-Espinosa E, Falco AS et al (2019) Characterization of indoor air mycobiota of two locals in a food industry. Cuba Air Qual Atmos Heal 12:797–805. https://doi.org/10.1007/s11869-019-00707-7

    Article  CAS  Google Scholar 

  • Anaya M, Gámez-Espinosa E, Valdés O et al (2021) Effect of the oscillating magnetic field on airborne fungal. Arch Microbiol 203:2139–2145. https://doi.org/10.1007/s00203-021-02193-x

    Article  CAS  Google Scholar 

  • Bowen AD, Davidson FA, Keatch R, Gadd GM (2007) Induction of contour sensing in Aspergillus niger by stress and its relevance to fungal growth mechanics and hyphal tip structure. Fungal Genet Biol 44:484–491. https://doi.org/10.1016/j.fgb.2006.11.012

    Article  Google Scholar 

  • Brand A, Gow NAR (2012) Tropic orientation responses of pathogenic fungi. In: Morphogenesis and pathogenicity in fungi. Springer, Berlin Heidelberg, Berlin, pp 21–41

    Chapter  Google Scholar 

  • Brand A, Lee K, Veses V, Gow NAR (2009) Calcium homeostasis is required for contact-dependent helical and sinusoidal tip growth in Candida albicans hyphae. Mol Microbiol 71:1155–1164. https://doi.org/10.1111/j.1365-2958.2008.06592.x

    Article  CAS  Google Scholar 

  • Brand A, Shanks S, Duncan VMS et al (2007) Hyphal orientation of Candida albicans is regulated by a calcium-dependent mechanism. Curr Biol 17:347–352. https://doi.org/10.1016/j.cub.2006.12.043

    Article  CAS  Google Scholar 

  • Corbacho I, Teixidó F, Velázquez R et al (2010) Yeast vacuole staining using quinacrine and neutral red. In: Microorganisms in industry and environment World Scientific, pp 659–661

    Chapter  Google Scholar 

  • Crombie C, Gow NAR, Gooday GW (1990) Influence of applied electrical fields on yeast and hyphal growth of Candida albicans. J Gen Microbiol 136:311–317. https://doi.org/10.1099/00221287-136-2-311

    Article  CAS  Google Scholar 

  • de Hoog G, Guarro J, Gené J et al (2020) The Atlas of clinical fungi, 4th edn. Foundation Atlas of Clinical Fungi, Hilversum, The Netherlands

    Google Scholar 

  • Dias PA, Dunkel T, Fajado DAS et al (2016) Image processing for identification and quantification of filamentous bacteria in in situ acquired images. Biomed Eng Online 15:64. https://doi.org/10.1186/s12938-016-0197-7

    Article  Google Scholar 

  • Domínguez M, Alberto J, Moxo S, Adriana B (2013) Localización de células de la levadura Saccharomyces cerevisiae mediante Procesamiento Digital de Imágenes. Rev Iberoam para la Investig y el Desarro Educ 10:1–18

    Google Scholar 

  • Driscoll R, Hudson A, Jackson SP (2007) Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science 315:649–652. https://doi.org/10.1126/science.1135862

    Article  CAS  Google Scholar 

  • Fermo IR, Cavali TS, Bonfim-Rocha L et al (2021) Development of a low-cost digital image processing system for oranges selection using hopfield networks. Food Bioprod Process 125:181–192. https://doi.org/10.1016/j.fbp.2020.11.012

    Article  Google Scholar 

  • Gloria I (2012) Comparing the growth of fungal cultures on groundnut dextrose medium and potatoes dextrose medium. J Sci 1:46–52

    Google Scholar 

  • Knudsen GR, Stack JP, Schuhmann SO et al (2006) Individual-based approach to modeling hyphal growth of a biocontrol fungus in soil. Phytopathol 96:1108–1115. https://doi.org/10.1094/PHYTO-96-1108

    Article  CAS  Google Scholar 

  • Kӧhli M (2007) From polarity establishment to fast hyphal growth in the filamentous fungus Ashbya gossypii. Tesis en opción al grado de Doctor en Ciencias. Facultad de Ciencias Naturales. Universidad de Basilea, Suiza, p 129

    Google Scholar 

  • Kopecká M, Gabriel M (1992) The influence of Congo red on the cell wall and (1 → 3)-β-d-glucan microfibril biogenesis in Saccharomyces cerevisiae. Arch Microbiol 158:115–126. https://doi.org/10.1007/BF00245214

    Article  Google Scholar 

  • Lodder J (1971) Criteria and methods used in classifications of Candida. In: The yeast, a taxonomic study. London Publishing Co, Amsterdam, pp 34–113

    Google Scholar 

  • Lozoya Pérez NE (2018) Relevancia de la N-glicosilación en la virulencia y reconocimiento inmune de Sporothrix schenckii. Tesis presentada para obtener el grado de Doctor en Ciencias (Biología). Universidad de Guanajuato

    Google Scholar 

  • Marcano D (2018) Introducción a la Química de los colorantes. Colección Divulgación Científica y Tecnológica. Academia de Ciencias Físicas, Matemáticas y Naturales, Caracas, Venezuela

    Google Scholar 

  • Massiera G, Van Citters KM, Biancaniello PL, Crocker JC (2007) Mechanics of single cells: rheology, time dependence, and fluctuations. Biophys J 93:3703–3713. https://doi.org/10.1529/biophysj.107.111641

    Article  CAS  Google Scholar 

  • Moriya M, Minegishi T, Kumagai H et al (2013) Stable hydrogen evolution from CdS-modified CuGaSe 2 photoelectrode under visible-light irradiation. J Am Chem Soc 135:3733–3735. https://doi.org/10.1021/ja312653y

    Article  CAS  Google Scholar 

  • Olea D (1995) Presencia de Candida albicans y su relación con los valores de CD4+ en pacientes con infección por VIH. Tesis en opción al Título de Doctor en Ciencias Médicas. Departamento de Cirugía, Facultad de Medicina, Universidad de Granada

    Google Scholar 

  • Peña-Martín J, Alvarado-Capó Y, Orozco-Morales R et al (2022) Counting of bacteria and yeasts in digital images. Medisur 20:243–256

    Google Scholar 

  • Picazo CP (2007) Integración de mecanismos de control redox y de señalización de nutrientes en la longevidad cronológica de levaduras vínicas. Tesis para optar por el grado de Doctor en Ciencias. Departamento de Bioquímica y Biología Molecular. Instituto de Agroquímica y Tecnología de Alimentos. Universidad de Valencia, España

    Google Scholar 

  • Puig De Morales M, Grabulosa M, Alcaraz J et al (2001) Measurement of cell microrheology by magnetic twisting cytometry with frequency domain demodulation. J Appl Physiol 91:1152–1159. https://doi.org/10.1152/jappl.2001.91.3.1152

    Article  CAS  Google Scholar 

  • Ram AFJ, Klis FM (2006) Identification of fungal cell wall mutants using susceptibility assays based on Calcofluor white and Congo red. Nat Protoc 1:2253–2256. https://doi.org/10.1038/nprot.2006.397

    Article  CAS  Google Scholar 

  • Reissmann S (2014) Cell penetration: scope and limitations by the application of cell-penetrating peptides. J Pept Sci 20:760–784. https://doi.org/10.1002/psc.2672

    Article  CAS  Google Scholar 

  • Reyes I (2006) Difusión crecimiento microbiano de Aspergillus niger sobre un medio sólido. Tesis en opción al Grado Científico de Máster en Ingeniería Química. Universidad Autónoma Metropolitana, México, DF. México

    Google Scholar 

  • Steinberg G (2007) Hyphal growth: a tale of motors, lipids, and the Spitzenkörper. Eukaryot Cell 6:351–360. https://doi.org/10.1128/EC.00381-06

    Article  CAS  Google Scholar 

  • Torres LR, Osorio GA (2012) El estado actual del proteoma de Aspergillus. Biotecnología 2:129–151

    Google Scholar 

  • Torres-Leyva M, Cala-Calviño L, Ortiz-Maestre JA et al (2008) Support facilitator for taking microscopic images with digital devices. Rev Cuba Informática Medica 10:1–12

    Google Scholar 

  • Váchová L, Palková Z (2005) Physiological regulation of yeast cell death in multicellular colonies is triggered by ammonia. J Cell Biol 169:711–717. https://doi.org/10.1083/jcb.200410064

    Article  CAS  Google Scholar 

  • Verdier C (2003) Rheological properties of living materials. From cells to tissues. J Theor Med 5:67–91. https://doi.org/10.1080/10273360410001678083

    Article  Google Scholar 

  • Wloch-Salamon DM, Bem AE (2013) Types of cell death and methods of their detection in yeast Saccharomyces cerevisiae. J Appl Microbiol 114:287–298. https://doi.org/10.1111/jam.12024

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erasmo Gámez-Espinosa.

Ethics declarations

Consent for publication

The authors give consent to this journal to publish the manuscript upon acceptation.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

(MOV 39285 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anaya, M., Gámez-Espinosa, E., Borrego, S. et al. Magnetotropism: a tropic response of Candida guillemondii by the effect of the oscillating magnetic field of extremely low frequency. Air Qual Atmos Health 16, 2367–2376 (2023). https://doi.org/10.1007/s11869-023-01408-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-023-01408-y

Keywords

Navigation