Skip to main content


Log in

Emission factors of selected air pollutants from rice straw burning in Hanoi, Vietnam

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript


Rice straw open burning (RSOB) after harvest is one of the considerable emission sources in agricultural activities and contributed to air pollution in Vietnam. Determination of country/city-specific emission factors for air pollutants from open burning is important for the better estimation of air pollutant emission. In this research, hood experiments and field experiments were conducted simulating the common small pile burning type used by farmers in the North of Vietnam to determine emission factors (EFs) for gaseous pollutants, particulate matter (PM), and particle-bound polycyclic aromatic hydrocarbons (PAHs). The carbon_mass balance and emission ratio method were used to calculate EFs for the field experiments. The PM2.5 emission factor obtained for open field burning (34.0 ± 17.6 g kg−1 RS), the EFs for SO2 (1.4 ± 1.1 g kg−1 RS for field experiments and 1.82 ± 1.77 g kg−1 RS for hood experiments) in this study was higher in comparison with the values reported in Thailand and China. Laboratory experiments showed positive correlation between RS carbon content and EF of CO2. The higher proportion and the contribution of benzo[a]pyrene (BaP) to the total 10 detected PAHs bound to PM2.5 in RS burning smoke was the first observation in this study. Based on the EFs developed in this study, we estimated that RSOB released the amount of 369.6 Gg for CO2, 13.7 Gg for CO, 0.67 Gg for SO2, 0.35 Gg for NO2, 10.8 Gg for PM2.5, and 32 Mg for total 10 particle-bound PAHs to the atmosphere in Hanoi. These results are useful for integrated air-quality management in local as well as national scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.


  • Akagi SK, Yokelson RJ, Wiedinmyer C, Alvarado MJ, Reid JS, Karl T, Crounse JD, Wennberg PO (2011) Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos Chem Phys 11:4039–4072.

    Article  CAS  Google Scholar 

  • Andreae MO (2019) Emission of trace gases and aerosols from biomass burning – an updated assessment. 19:8523–8546.

  • Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Global Biogeochem. Cycles 15(4):955–966

    Article  CAS  Google Scholar 

  • Bac VT, Hien PD (2009) Regional and local emissions in red river delta. Northern Vietnam Air Qual Atmos Heal 2:157–167.

    Article  CAS  Google Scholar 

  • Cao G, Zhang X, Gong S, Zheng F (2008) Investigation on emission factors of particulate matter and gaseous pollutants from crop residue burning. J Environ Sci 20:50–55

    Article  CAS  Google Scholar 

  • Chen KS, Wang HK, Peng YP, Wang WC, Chen CH, Lai CH (2008) Effects of open burning of rice straw on concentrations of atmospheric polycyclic aromatic hydrocarbons in Central Taiwan. J Air Waste Manage Assoc 58(10):1318–1327.

    Article  CAS  Google Scholar 

  • Christian TJ, Kleiss B, Yokelson RJ, Holzinger R, Crutzen PJ, Hao WM, Saharjo BH, Ward DE (2003) Comprehensive laboratory measurements of biomass-burning emissions: 1 . Emissions from Indonesian , African , and other fuels. J Geophys Res 108:4719.

    Article  CAS  Google Scholar 

  • Dhammapala R, Claiborn C, Simpson C, Jimenez J (2007) Emission factors from wheat and Kentucky bluegrass stubble burning: comparison of field and simulated burn experiments. Atmos Environ 41:1512–1520.

    Article  CAS  Google Scholar 

  • Ferek RJ, Reid JS, Hobbs PV, Blake DR, Liousse C (1998) Emission factors of hydrocarbons, halocarbons, trace gases and particles from biomass burning in Brazil. J Geophys Res 103(D24):32,107–32,118

    Article  CAS  Google Scholar 

  • Gadde B, Bonnet S, Menke C, Garivait S (2009) Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environ Pollut 157:1554–1558.

    Article  CAS  Google Scholar 

  • Hai LT (2012) Technical assistance consultant ’ s report support for the Association of Southeast Asian Nations plus three integrated food security framework the rice situation in Viet Nam. Asian Development Bank

  • Hayashi K, Ono K, Kajiura M, Sudo S (2014) Trace gas and particle emissions from open burning of three cereal crop residues: increase in residue moistness enhances emissions of carbon monoxide , methane , and particulate organic carbon. Atmos Environ 95:36–44.

    Article  CAS  Google Scholar 

  • Hays MD, Fine PM, Geron CD, Kleeman MJ, Gullett BK (2005) Open burning of agricultural biomass: physical and chemical properties of particle-phase emissions. Atmos Environ 39:6747–6764.

    Article  CAS  Google Scholar 

  • Hoang AL, Tran VA, Nguyen TQH (2017) Air pollutants estimated from rice straw open burning in Hanoi. J Agric Sci Technol (in Vietnamese):101–107

  • IARC (2010) Working Group on the Evaluation of Carcinogenic Risks to Humans. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposuresitle. In IARC Monogr. Eval. Carcinog. Risks Hum

  • Jenkins BM, Jones AD, Turn SQ, Williams RB (1996) Emission factors for polycyclic aromatic hydrocarbons from biomass burning. Environ Sci Technol 30(8):2462–2469.

    Article  CAS  Google Scholar 

  • Kanabkaew T, Kim Oanh NT (2011) Development of spatial and temporal emission inventory for crop residue field burning. Env. Model Assess 16:453–464.

    Article  Google Scholar 

  • Kanokkanjana K, Garivait S, Experiments AF, Fields P (2013) Alternative rice straw management practices to educe field open burning in Thailand. 4(2).

  • Katz M, Chen C, Tosine B, Sakuma T (1979) Relative rates of photochemical and biological oxidation (in vitro) of polynuclear aromatic hydrocarbons. In P.W.Jones, editor; and P.Leber, editor. , Eds. Polynuclear aromatic hydrocarbons: Third International Symposium in Chemistry and Biology—Carcinoge Ann Arbor: Ann Arbor Science Publishers

  • Keshtkar H, Ashbaugh LL (2007) Size distribution of polycyclic aromatic hydrocarbon particulate emission factors from agricultural burning. Atmos Environ 41:2729–2739.

    Article  CAS  Google Scholar 

  • Kim Oanh NT, Reutergårdh LB, Dung NT (1999) Emission of polycyclic aromatic hydrocarbons and particulate matter from domestic combustion of selected fuels. Environ Sci Technol 33(16):2703–2709.

    Article  CAS  Google Scholar 

  • Kim Oanh NT, Ly BT, Danutawat TD, Manandhar RB, Prapat P, Simpson CD, Liu LS (2011) Characterization of particulate matter emission from open burning of rice straw. Atmos Environ 45:493–502.

    Article  CAS  Google Scholar 

  • Kim Oanh NT, Tipayarom A, Ly B-T, Tipayarom D, Simpson CD, Hardie D, Liu L-JS (2015) Characterization of gaseous and semi-volatile organic compounds emitted from field burning of rice straw. Atmos Environ 119:182–191.

    Article  CAS  Google Scholar 

  • Korenaga T, Liu X, Huang Z (2001) The influence of moisture content on polycyclic aromatic hydrocarbons emission during rice straw burning. Chemosphere Global Change Sci 3:117–122

    Article  CAS  Google Scholar 

  • Lasko K, Vadrevu K (2018a) Improved rice residue burning emissions estimates: accounting for practice-speci fi c emission factors in air pollution assessments. Environ Pollut 236:795–806.

    Article  CAS  Google Scholar 

  • Lasko K, Vadrevu KP (2018b) Biomass burning emissions variation from satellite-derived land cover , burned area , and emission factors in Vietnam (K. P. V. et Al. (ed.)) Springer International Publishing AG

  • Le HA, Phuong DM, Linh LT (2020) Emission inventories of rice straw open burning in the Red River Delta of Vietnam: evaluation of the potential of satellite data. Environ Pollut 260:113972.

    Article  CAS  Google Scholar 

  • Lee S, Baumann K, Schauer JJ, Sheesley RJ, Naeher LP, Meinardi S, Blake DR, Edgerton ES, Russell AG, Clements M (2005) Gaseous and particulate emissions from prescribed burning in. Georgia 39(23):9049–9056

    CAS  Google Scholar 

  • Lemieux PM, Lutes CC, Santoianni DA (2004) Emissions of organic air toxics from open burning: a comprehensive review. In Progress in energy and combustion. Science 30(1).

  • Li X, Wang S, Duan L, Hao J, Li C, Chen Y, Yang L (2007) Particulate and trace gas emissions from open burning of wheat straw and corn stover in China. Environ Sci Technol 41(17):6052–6058.

    Article  CAS  Google Scholar 

  • Lodge J (1988) Methods of air sampling and analysis (3rd ed.) CRC Press.

  • Lu H, Zhu L, Zhu N (2009) Polycyclic aromatic hydrocarbon emission from straw burning and the influence of combustion parameters. Atmos Environ 43(4):978–983.

    Article  CAS  Google Scholar 

  • Mcmeeking GR, Kreidenweis SM, Baker S, Carrico CM, Chow JC, JLC JR, Hao WM, Holden AS, Kirchstetter TW, Malm WC, Moosmu ller H, Sullivan AP, Wold CE (2009) Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory. J Geophys Res 114:1–20.

    Article  CAS  Google Scholar 

  • Nguyen TN, Nguyen MN, Mcnamara M, Dultz S, Meharg A, Nguyen VT (2019) Encapsulation of lead in rice phytoliths as a possible pollutant source in paddy soils. Environ Exp Bot 162:58–66.

    Article  CAS  Google Scholar 

  • Ni H, Han Y, Cao J, Chen LA, Tian J, Wang X, Chow JC, Watson JG, Wang Q, Wang P, Li H, Huang R-J (2015) Emission characteristics of carbonaceous particles and trace gases from open burning of crop residues in China. Atmos Environ 23(Part B):399–406.

    Article  CAS  Google Scholar 

  • Orakij W, Chetiyanukornkul T, Kasahara C, Boongla Y, Chuesaard T, Furuuchi M, Hata M, Tang N, Hayakawa K, Toriba A (2017) Polycyclic aromatic hydrocarbons and their nitro derivatives from indoor biomass-fueled cooking in two rural areas of Thailand: a case study. Air Qual Atmos Health 10:747–761.

    Article  CAS  Google Scholar 

  • Pham CT, Kameda T, Toriba A, Hayakawa K (2013) Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in particulates emitted by motorcycles. Environ Pollut 183:175–183.

    Article  CAS  Google Scholar 

  • Pham CT, Do TM, Nghiem TD (2018) Determination of emission level of selected air pollutants from burning of rice straw in the open field in Gia Lam District, Hanoi. Vietnam J Agric Sci 16(2):152–160

    Google Scholar 

  • Pham CT, Boongla Y, Nghiem TD, Le HT, Tang N, Toriba AKH (2019) Emission characteristics of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons from open burning of rice straw in the north of Vietnam. Int J Environ Res Public Health 16:2343

    Article  CAS  Google Scholar 

  • Reid JS, Koppmann R, Eck TF, Eleuterio DP (2005) A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmos Chem Phys 5:799–825

    Article  CAS  Google Scholar 

  • Romasantaa RR, Sander BO, Gaihre YK, Alberto MC, Gummert M, Quilty J, Nguyen VH, Castalone AG, Balingbing C, Sandro J, TC JR, Wassmann R (2017) How does burning of rice straw affect CH4 and N 2O emissions? A comparative experiment of different on- fi eld straw management practices. Agric Ecosyst Environ 239:143–153.

    Article  CAS  Google Scholar 

  • Sanchis E, Ferrer M, Calvet S, Coscollà C, Yusà V, Cambra-López M (2014) Gaseous and particulate emission profiles during controlled rice straw burning. Atmos Environ 98:25–31.

    Article  CAS  Google Scholar 

  • Sheesley RJ, Schauer JJ, ZC GR, CB RTS (2003) Characterization of organic aerosols emitted from the combustion of biomass indigenous to South Asia. J Geophys Res 108(D9):4285.

    Article  CAS  Google Scholar 

  • U.S. EPA (1986) Modified Method 5 (Method 0010) Sampling train. Revision 0, U.S. EPA, September

  • U.S. EPA (1995) Compilation of Air Pollutant Emission Factors AP-42, Volume I: Stationary point & area sources.

  • VGSO (2019) Statistical Year Book of Vietnam. In Statistical Year Book of Vietnam General Statistics Office, Hanoi, Vietnam 481-590

  • Vianaa M, JML, XQ, Alastuey A, Garcıa-Gaciob D, Blanco-Herasb G, PLM, MPI, Sanz MJ, Sanz F, Chie X, Maenhaute W (2008) Tracers and impact of open burning of rice straw residues on PM in Eastern Spain 42: 1941–1957.

  • Yaning Z, Ghaly AE, Li B (2013) Physical properties of rice residues as affected by variety and climatic and cultivation onditions in three continents. Am J Appl Sci 9(11):1757–1768.

    Article  Google Scholar 

  • Yanxu Z, Dou H, Chang B, Wei Z, Qiu W, Liu S, Liu W, Tao S (2008) Emission of polycyclic aromatic hydrocarbons from indoor straw burning and emission inventory updating in China. Ann N Y Acad Sci 1140:218–227.

    Article  CAS  Google Scholar 

  • Zhang H, Ye X, Cheng T, Chen J, Yang X, Wang L, Zhang R (2008) A laboratory study of agricultural crop residue combustion in China: emission factors and emission inventory. Atmos Environ 42:8432–8441.

    Article  CAS  Google Scholar 

  • Zhang T, Wooster MJ, Green DC, Main B (2015) New field-based agricultural biomass burning trace gas , PM2.5 , and black carbon emission ratios and factors measured in situ at crop residue fi res in Eastern China. Atmopheric Environ 212:22–34

    Article  Google Scholar 

  • Zhang Y, Shao M, Lin Y, Luan S, Mao N, Chen W, Wang M (2013) Emission inventory of carbonaceous pollutants from biomass burning in the Pearl River Delta Region, China. Atmos Environ 76:189–199.

Download references


The authors wish to acknowledge Dr. Nguyen Thi Thu Hien and all members of Research and Development Laboratory, School of Environmental Science and Technology, Hanoi University of Science and Technology, Vietnam, for supporting in sampling in the field and hood experiments.

Code availability

Not applicable.


This research was funded by: 1) the Vietnam National Foundation for Science and Technology Development (NAFOSTED) grant number 105.08-2017.11; 2) a Grant in Aid for Scientific Research (18K11676) from Japan Society for the Promotion Science; 3) the Steel Foundation for Environmental Protection Technology. This research was aslo conducted in part under the cooperative research program of Institute of Nature and Environmental Technology, Kanazawa University.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Chau-Thuy Pham.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information


(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, CT., Ly, BT., Nghiem, TD. et al. Emission factors of selected air pollutants from rice straw burning in Hanoi, Vietnam. Air Qual Atmos Health 14, 1757–1771 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: