Skip to main content
Log in

Study on respiratory deposition doses of typical Indian opencast coal mineworkers using occupational particulate matter levels

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

The opencast coal mineworkers experience site-specific microenvironments (MEs) during coal production due to different benches. This study investigates the particulate matter (PM0.5, PM0.5-1, PM1-2.5, and PM2.5-10) exposure in MEs of opencast coal mines near Dhanbad, India. The present study estimates the respiratory deposition doses (RDD) to mineworkers exposed under standard working scenarios at the worksite during day time shift (DTS). The coarser mode particle mass concentration (PMC) and particle number concentration (PNC) are 1.4 to 10.6 and 2 to 7.5 times higher within mines at active mining locations, whereas accumulation mode PMC and PNC is 1.1 to 1.5 and 1.1 to 1.9 times higher outside the mines. The opencast mining-associated activities like the excavation of coal and overburden contribute more to the coarser fraction of particles. However, accumulation mode PMC and PNC dominates at locations with no such mining activities except dumper operations. The average RDD of PMC and PNC during DTS to mineworkers varies from 320.97 μg DTS-1 and 3.69×108 # DTS-1 and 3835.71 μg DTS-1 and 8.79×108 # DTS-1 respectively. The occupational RDD results reveal that onsite maintenance workers (OM) category of mineworkers are more vulnerable to accumulation mode PMC followed by blasting associated mineworkers (B), onsite executives (EM), maintenance workers (workshop) (MW), monitoring workers (M), HEMMs operators (O), workers at gathering point (G), and official executives (EO). Whereas OM category of workers is more vulnerable to coarser mode PMC followed by B, M, EM, O, MW, G, and EO category of mineworkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

Abbreviations

MEs:

microenvironments

PM:

particulate matter

PNC:

particle number concentration

PMC:

particle mass concentration

RDD:

respiratory deposition doses

ICRP:

International Commission on Radiological Protection

HA:

head airways

TB:

tracheobronchial

AL:

Alveolar

LPA:

light physical activity

HPA:

heavy physical activity

CV:

coefficient of variance

B – 2 :

bench 2

B – 4 :

bench 4

B – 3 :

bench 3

B – 5 :

bench 5

HEMMs:

heavy earthmoving machineries

G:

gathering point

O:

HEMMs operators

M:

monitoring workers

B:

blasting associated workers

OM:

maintenance workers (onsite)

MW:

maintenance workers (workshop)

EM:

executives (onsite)

EO:

executives (official)

DTS:

day time shift

OB:

overburden

DTS:

day time shift

References

  • Aneja VP, Isherwood A, Morgan P (2012) Characterization of particulate matter (PM10) related to surface coal mining operations in Appalachia. Atmos Environ 54:496–501

    Article  CAS  Google Scholar 

  • Azarmi F, Kumar P (2016) Ambient exposure to coarse and fine particle emissions from building demolition. Atmos Environ 137:62–79

    Article  CAS  Google Scholar 

  • Brown JS, Zeman KL, Bennett WD (2002) Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am J Respir Crit Care Med 166(9):1240–1247

    Article  Google Scholar 

  • Bui VKH, Moon JY, Chae M, Park D, Lee YC (2020) Prediction of aerosol deposition in the human respiratory tract via computational models: A review with recent updates. Atmosphere 11(2):137

    Article  CAS  Google Scholar 

  • Burnett RT, Smith-Doiron M, Stieb D, Cakmak S, Brook JR (1999) Effects of particulate and gaseous air pollution on cardiorespiratory hospitalizations. Archives of Environmental Health: An International Journal 54(2):130–139

    Article  CAS  Google Scholar 

  • Chen R, Hu B, Liu Y, Xu J, Yang G, Xu D, Chen C (2016) Beyond PM2. 5: The role of ultrafine particles on adverse health effects of air pollution. Biochimica et Biophysica Acta (BBA)-General Subjects 1860(12):2844–2855

    Article  CAS  Google Scholar 

  • Chikkatur AP, Sagar AD, Sankar TL (2009) Sustainable development of the Indian coal sector. Energy 34(8):942–953

    Article  Google Scholar 

  • Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG, Speizer FE (1993) An association between air pollution and mortality in six US cities. N Engl J Med 329(24):1753–1759

    Article  CAS  Google Scholar 

  • Franck U, Odeh S, Wiedensohler A, Wehner B, Herbarth O (2011) The effect of particle size on cardiovascular disorders—The smaller the worse. Sci Total Environ 409(20):4217–4221

    Article  CAS  Google Scholar 

  • Gautam S, Patra AK (2015) Dispersion of particulate matter generated at higher depths in opencast mines. Environ Technol Innov 3:11–27

    Article  Google Scholar 

  • Gautam S, Patra AK, Prusty BK (2012) Opencast mines: a subject to major concern for human health. International Research Journal of Geology and Mining 2(2):25–31

    Google Scholar 

  • Gautam S, Prusty BK, Patra AK (2015) Dispersion of respirable particles from the workplace in opencast iron ore mines. Environ Technol Innov 4:137–149

    Article  Google Scholar 

  • Gautam S, Kumar P, Patra AK (2016a) Occupational exposure to particulate matter in three Indian opencast mines. Air Qual Atmos Health 9(2):143–158

    Article  CAS  Google Scholar 

  • Gautam S, Prasad N, Patra AK, Prusty BK, Singh P, Pipal AS, Saini R (2016b) Characterization of PM2. 5 generated from opencast coal mining operations: A case study of Sonepur Bazari Opencast Project of India. Environ Technol Innov 6:1–10

    Article  Google Scholar 

  • Gautam S, Teraiya J, Patra AK (2018) Spatial statistics, spatial correlation and spatial graph theory in air pollution. Environ Technol Innov 11:384–389

    Article  Google Scholar 

  • George KV, Patil DD, Alappat BJ (2013) PM10 in the ambient air of Chandrapur coal mine and its comparison with other environments. Environ Monit Assess 185(2):1117–1128

    Article  CAS  Google Scholar 

  • Goel A, Rathi S, Agrawal M (2018) Toxicity potential of particles caused by particle-bound polycyclic aromatic hydrocarbons (PPAHs) at two roadside locations and relationship with traffic. Environ Sci Pollut Res 25(30):30633–30646

    Article  CAS  Google Scholar 

  • GRIMM (2010) Operation manual of Portable Laser Aerosol spectrometer and dust monitor (Model 1.108/1.109). GRIMM Aerosol Technik GmbH & Co KG Ainring, Germany

  • Guha S, Hariharan P, Myers MR (2014) Enhancement of ICRP's lung deposition model for pathogenic bioaerosols. Aerosol Sci Technol 48(12):1226–1235

    Article  CAS  Google Scholar 

  • Gupta SK, Elumalai SP (2017) Size-segregated particulate matter and its association with respiratory deposition doses among outdoor exercisers in Dhanbad City India. J Air Waste Manage Assoc 67(10):1137–1145

    Article  CAS  Google Scholar 

  • Haney RA, Saseen GP, Waytulonis RW (1997) An overview of diesel particulate exposures and control technology in the US mining industry. Appl Occup Environ Hyg 12(12):1013–1018

    Article  CAS  Google Scholar 

  • Harrison RM, Smith DJT, Kibble AJ (2004) What is responsible for the carcinogenicity of PM2.5? Occup Environ Med 61(10):799–805

    Article  CAS  Google Scholar 

  • Hinds WC (1999) Aerosol Technology: Properties Behaviour and Measurement of Airborne Particles, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

  • Hussain M, Madl P, Khan A (2011) Lung deposition predictions of airborne particles and the emergence of contemporary diseases, Part-I. Health 2(2):51–59

    Google Scholar 

  • International Commission on Radiological Protection (ICRP) (1994) Human Respiratory Tract Model for Radiological Protection: A Report of a Task Group of the International Commission on Radiological Protection. ICRP Publication 66 Ottawa, Ontario, Canada: International Commission on Radiological Protection

  • Järvelä M, Kauppi P, Tuomi T, Luukkonen R, Lindholm H, Nieminen R, Moilanen E, Hannu T (2013) Inflammatory response to acute exposure to welding fumes during the working day. Int J Occup Med Environ Health 26(2):220–229

    Article  Google Scholar 

  • Jones T, Blackmore P, Leach M, Berube K, Sexton K, Richards R (2002) Characterisation of airborne particles collected within and proximal to an opencast coalmine: South Wales UK. Environ Monit Assess 75(3):293–312

    Article  CAS  Google Scholar 

  • Kimbal KC, Pahler L, Larson R, VanDerslice J (2012) Monitoring diesel particulate matter and calculating diesel particulate densities using Grimm Model 1.109 real-time aerosol monitors in underground mines. J Occup Environ Hyg 9(6):353–361

    Article  CAS  Google Scholar 

  • Kulshreshtha M, Parikh JK (2002) Study of efficiency and productivity growth in opencast and underground coal mining in India: a DEA analysis. Energy Econ 24(5):439–453

    Article  Google Scholar 

  • Kumar P, Goel A (2016) Concentration dynamics of coarse and fine particulate matter at and around signalised traffic intersections. Environ Sci Process Impacts 18(9):1220–1235

    Article  CAS  Google Scholar 

  • Kumar A, Elumalai SP, Yang HH (2020) On-site and off-site material preparation pavement approaches on particle emission and associated health impacts on workers. Stoch Env Res Risk A 34(1):183–199

    Article  Google Scholar 

  • Kurth ML, McCawley M, Hendryx M, Lusk S (2014) Atmospheric particulate matter size distribution and concentration in West Virginia coal mining and non-mining areas. J Exposure Sci Environ Epidemiol 24:405–411

    Article  CAS  Google Scholar 

  • Lal B, Tripathy SS (2012) Prediction of dust concentration in open cast coal mine using artificial neural network. Atmospheric Pollution Research 3(2):211–218

    Article  CAS  Google Scholar 

  • Landen DD, Wassell JT, McWilliams L, Patel A (2011) Coal dust exposure and mortality from ischemic heart disease among a cohort of US coal miners. Am J Ind Med 54(10):727–733

    Article  CAS  Google Scholar 

  • Li CS, Lin CH (2002) PM 1/PM 2.5/PM 10 characteristics in the urban atmosphere of Taipei. Aerosol Sci Technol 36(4):469–473

    Article  CAS  Google Scholar 

  • Lim S, Lee M, Lee G, Kim S, Yoon S, Kang K (2012) Ionic and carbonaceous compositions of PM10 PM2.5 and PM1.0 at Gosan ABC Superstation and their ratios as source signature. Atmos Chem Phys 12(4):2007–2024

    Article  CAS  Google Scholar 

  • Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou, E (2020) Environmental and health impacts of air pollution: a review. Frontiers in public health 8

  • Marrugo-Negrete JL, Urango-Cardenas ID, Nunez SMB, Diez S (2014) Atmospheric deposition of heavy metals in the mining area of the San Jorge River basin Colombia. Air Qual Atmos Health 7:577–588

    Article  Google Scholar 

  • Mishra DP, Sugla M, Singha P (2013) Productivity improvement in underground coal mines-a case study. Journal of Sustainable Mining 12(3):48–53

    Article  Google Scholar 

  • Munro JF, Crompton GK (1999) Health effects of respirable dust from opencast coal mining. Proceedings-Royal College of Physicians of Edinburgh 29:11–15

    Article  Google Scholar 

  • Naidoo R, Seixas N, Robins T (2006) Estimation of respirable dust exposure among coal miners in South Africa. J Occup Environ Hyg 3(6):293–300

    Article  Google Scholar 

  • Noll JD, Bugarski AD, Patts LD, Mischler SE, McWilliams L (2007) Relationship between elemental carbon total carbon and diesel particulate matter in several underground metal/non-metal mines. Environ Sci Technol 41(3):710–716

    Article  CAS  Google Scholar 

  • Onder M, Yigit E (2009) Assessment of respirable dust exposures in an opencast coal mine. Environ Monit Assess 152(1–4):393–401

    Article  CAS  Google Scholar 

  • Osei-Boakye K (2007) The development of diesel particulate matter (DPM) predictive model for the Barrick (Goldstrike) Meikle Mine. University of Nevada, Reno

    Google Scholar 

  • Ostro B, Hu J, Goldberg D, Reynolds P, Hertz A, Bernstein L, Kleeman MJ (2015) Associations of mortality with long-term exposures to fine and ultrafine particles species and sources: results from the California Teachers Study Cohort. Environ Health Perspect 123(6):549–556

    Article  Google Scholar 

  • Pandey B, Agrawal M, Singh S (2014) Assessment of air pollution around coal mining area: emphasizing on spatial distributions seasonal variations and heavy metals using cluster and principal component analysis. Atmos Pollut Res 5:79–86

    Article  Google Scholar 

  • Patra AK, Gautam S, Kumar P (2016a) Emissions and human health impact of particulate matter from surface mining operation—A review. Environ Technol Innov 5:233–249

    Article  Google Scholar 

  • Patra AK, Gautam S, Majumdar S, Kumar P (2016b) Prediction of particulate matter concentration profile in an opencast copper mine in India using an artificial neural network model. Air Qual Atmos Health 9(6):697–711

    Article  CAS  Google Scholar 

  • Polichetti G, Cocco S, Spinali A, Trimarco V, Nunziata A (2009) Effects of particulate matter (PM10 PM2 5 and PM1) on the cardiovascular system. Toxicology 261(1–2):1–8

    Article  CAS  Google Scholar 

  • Pope CA III, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002) Lung cancer cardiopulmonary mortality and long-term exposure to fine particulate air pollution. Jama 287(9):1132–1141

    Article  CAS  Google Scholar 

  • Richardson C, Rutherford S, Agranovski I (2018) Characterization of particulate emissions from australian open-cut coal mines: toward improved emission estimates. J Air Waste Manage Assoc 68(6):598–607

    Article  CAS  Google Scholar 

  • Roy D, Gautam S, Singh P, Singh G, Das BK, Patra AK (2016) Carbonaceous species and physicochemical characteristics of PM 10 in coal mine fire area—a case study. Air Qual Atmos Health 9(4):429–437

    Article  CAS  Google Scholar 

  • Saarikoski S, Teinilä K, Timonen H, Aurela M, Laaksovirta T, Reyes F, Vásques Y, Oyola P, Artaxo P, Pennanen AS, Junttila S (2018) Particulate matter characteristics dynamics and sources in an underground mine. Aerosol Sci Technol 52(1):114–122

    Article  CAS  Google Scholar 

  • Scheepers PTJ, Micka V, Muzyka V, Anzion R, Dahmann D, Poole J, Bos RP (2003) Exposure to dust and particle-associated 1-nitropyrene of drivers of diesel-powered equipment in underground mining. Ann Occup Hyg 47(5):379–388

    CAS  Google Scholar 

  • Schwartz J, Neas LM (2000) Fine particles are more strongly associated than coarse particles with acute respiratory health effects in schoolchildren. Epidemiology 11(1):6–10

    Article  CAS  Google Scholar 

  • Schwartz J, Dockery DW, Neas LM (1996) Is daily mortality associated specifically with fine particles? J Air Waste Manage Assoc 46(10):927–939

    Article  CAS  Google Scholar 

  • Segalin B, Kumar P, Micadei K, Fornaro A, Gonçalves FL (2017) Size–segregated particulate matter inside residences of elderly in the Metropolitan Area of São Paulo Brazil. Atmos Environ 148:139–151

    Article  CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New York

    Google Scholar 

  • Sumanth C, Khare M, Shukla K (2020) Numerical modelling of PM10 dispersion in open-pit mines. Chemosphere 259:127–454

    Article  Google Scholar 

  • Tecer LH, Süren P, Alagha O, Karaca F, Tuncel G (2008) Effect of meteorological parameters on fine and coarse particulate matter mass concentration in a coal-mining area in Zonguldak Turkey. J Air Waste Manage Assoc 58(4):543–552

    Article  CAS  Google Scholar 

  • Trivedi R, Mondal A, Chakraborty MK, Tewary BK (2010) A statistical analysis of ambient air quality around opencast coal projects in Wardha Valley coalfields western coal fields limited India. Indian Journal of Environmental Protection 30(12):969–977

    CAS  Google Scholar 

  • Vermeulen R, Coble JB, Lubin JH, Portengen L, Blair A, Attfield MD, Silverman DT, Stewart PA (2010) The Diesel Exhaust in Miners Study: IV Estimating historical exposures to diesel exhaust in underground non-metal mining facilities. Ann Occup Hyg 54(7):774–788

    CAS  Google Scholar 

  • Wu Z, Hu M, Lin P, Liu S, Wehner B, Wiedensohler A (2008) Particle number size distribution in the urban atmosphere of Beijing China. Atmos Environ 42(34):7967–7980

    Article  CAS  Google Scholar 

  • Zanobetti A, Schwartz J (2009) The effect of fine and coarse particulate air pollution on mortality: a national analysis. Environ Health Perspect 117(6):898–903

    Article  Google Scholar 

  • Zhang D, Iwasaka Y, Matsuki A, Ueno K, Matsuzaki T (2006) Coarse and accumulation mode particles associated with Asian dust in southwestern Japan. Atmos Environ 40(7):1205–1215

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to IIT(ISM) Dhanbad to avail the necessary instruments under the FRS project: FRS (40) /2012-2013/ESE, entitled “Physical and chemical characterization of PM for Dhanbad city to identify the contribution from traffic sources.” The authors wish to thank Bharat Cocking Coal Limited (BCCL) officials, Dhanbad, for permitting to conduct this study at one of their opencast coal mines. Moreover, the authors would like to thank the officials of the Dobari opencast mines, Bastacola Area and BCCL, for their support during the field study. The author is very much thankful to Mr. Abhishek Ananad, M.Tech, Department of ESE, IIT (ISM) Dhanbad, to provide the necessary support and physical presence during the field study. In the end, the authors are thankful to all other contributors involved directly or indirectly in this study.

Code availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Ambasht Kumar performed data collection and analysis. The corresponding author framed the concept of the manuscript. The first authors wrote the first draft of the manuscript and the corresponding authors corrected the proof. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Suresh Pandian Elumalai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 549 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Elumalai, S.P. Study on respiratory deposition doses of typical Indian opencast coal mineworkers using occupational particulate matter levels. Air Qual Atmos Health 14, 1247–1265 (2021). https://doi.org/10.1007/s11869-021-01014-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-021-01014-w

Keywords

Navigation