Skip to main content

The impact of emissions and climate change on future ozone concentrations in the USA

A Correction to this article was published on 24 May 2022

This article has been updated


The potential impacts of climate change and future anthropogenic emissions on ozone levels in the USA are examined by linking global climate models to regional meteorological and air quality models during 3-year summer periods over the nine climate regions of the continental United States for three cases: (1) using 2016 meteorology and emissions (CTRL), (2) using 2050 meteorology and 2016 emissions (CASE1), and (3) using 2050 meteorology and 2050 emissions (CASE2). As climate change alone is expected to worsen ozone pollution and emission reductions are expected to reduce ozone concentrations, in this paper, the non-linear response of future ozone levels to both meteorological conditions and emissions was studied. The results show the well-known positive ozone correlation with surface temperature and negative ozone correlation with humidity in all regions. Climate change alone will increase future MDA8 ozone in the USA by 3.6 ppb. With climate change and policy intervention based on RCP 8.5, ozone levels will decrease 7.2 ppb on average for all climate regions in the USA. Furthermore, while climate change alone will double the number of stations violating the current National Ambient Air Quality Standard (NAAQS) for ozone in 2050, when policies are in effect, this number was reduced to 21 stations. The number of high-ozone days will also increase in climate change only case in all regions with an average of 5.7 extra high-ozone days which confirms previous studies. The results show that even with high-ozone precursor reductions, the ozone levels will still violate the current national ozone standard. Therefore, in order to meet the current ozone standard by 2050, more stringent climate and air pollution control policies for most regions in the USA are needed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Change history


  • Archer CL, Brodie JF, Rauscher SA (2019) Global warming will aggravate ozone pollution in the U.S. Mid-Atlantic. J Appl Meteorol Climatol 58(6):1267–1278.

    Article  Google Scholar 

  • Belan BD, Savkin DE, Tolmachev GN (2018) Air-temperature dependence of the ozone generation rate in the surface air layer. Atmos Ocean Opt 31(2):187–196.

    CAS  Article  Google Scholar 

  • Bruyere L, Monaghan J, Steinhoff F, Yates D (2015) Bias-corrected CMIP5 CESM data in WRF/MPAS intermediate file format

  • Camalier L, Cox W, Dolwick P (2007) The effects of meteorology on ozone in urban areas and their use in assessing ozone trends. Atmos Environ 41(33):7127–7137.

    CAS  Article  Google Scholar 

  • Cohan DS, Hakami A, Hu Y, Russell AG (2005) Nonlinear response of ozone to emissions: source apportionment and sensitivity analysis. Environ Sci Technol 39(17):6739–6748.

    CAS  Article  Google Scholar 

  • Collet S, Kidokoro T, Karamchandani P, Shah T, Jung J (2017) Future-year ozone prediction for the United States using updated models and inputs. J Air Waste Manag Assoc 67(8):938–948.

    CAS  Article  Google Scholar 

  • Doherty RM, Wild O, Shindell DT, Zeng G, MacKenzie IA, Collins WJ, Fiore AM, Stevenson DS, Dentener FJ, Schultz MG, Hess P, Derwent RG, Keating TJ (2013) Impacts of climate change on surface ozone and intercontinental ozone pollution: a multi-model study. J Geophys Res Atmos 118 (9):3744–3763.

    CAS  Article  Google Scholar 

  • Fiore AM, Naik V, Leibensperger EM (2015) Air quality and climate connections. J Air Waste Manag Assoc 65(6):645–685.

    CAS  Article  Google Scholar 

  • Fu T-M, Zheng Y, Paulot F, Mao J, Yantosca RM (2015) Positive but variable sensitivity of august surface ozone to large-scale warming in the southeast United States. Nat Clim Chang 5:454–458.

    CAS  Article  Google Scholar 

  • Gao Y, Fu JS, Drake JB, Lamarque J-F, Liu Y (2013) The impact of emission and climate change on ozone in the United States under representative concentration pathways (RCPs). Atmos Chem Phys 13(18):9607–9621.

    CAS  Article  Google Scholar 

  • Gidden MJ, Riahi K, Smith SJ, Fujimori S, Luderer G, Kriegler E, van Vuuren DP, vanden Berg M, Feng L, Klein D, Calvin K, Doelman JC, Frank S, Fricko O, Harmsen M, Hasegawa T, Havlik P, Hilaire J, Hoesly R, Horing J, Popp A, Stehfest E, Takahashi K (2019) Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci Model Dev 12(4):1443–1475.

    CAS  Article  Google Scholar 

  • Gilliam RC, Pleim JE (2010) Performance assessment of new land surface and planetary boundary layer physics in the WRF-ARW. J Appl Meteorol Climatol 49(4):760–774.

    Article  Google Scholar 

  • Gonzalez-Abraham R, Chung SH, Avise J, Lamb B, Salathé EPJr., Nolte CG, Loughlin D, Guenther A, Wiedinmyer C, Duhl T, Zhang Y, Streets DG (2015) The effects of global change upon United States air quality. Atmos Chem Phys 15(21):12645–12665.

    CAS  Article  Google Scholar 

  • Henderson BH, Akhtar F, Pye H OT, Napelenok SL, Hutzell WT (2014) A database and tool for boundary conditions for regional air quality modeling: description and evaluation. Geosci Model Dev 7 (1):339–360.

    CAS  Article  Google Scholar 

  • Iny J, Coull BA, Zanobetti A, Koutrakis P (2015) The impact of nitrogen oxides concentration decreases on ozone trends in the USA. Air Qual Atmos Health 8(3)

  • Jacob DJ, Winner DA (2009) Effect of climate change on air quality. Atmos Environ 43 (1):51–63.

    CAS  Article  Google Scholar 

  • Kim MJ, Park RJ, Ho C-H, Woo J-H, Choi K-C, Song C-K, Lee J-B (2015) Future ozone and oxidants change under the RCP scenarios. Atmos Environ 101:103–115.

    CAS  Article  Google Scholar 

  • Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma M LT, Lamarque J-F, Matsumoto K, Montzka SA, Raper S CB, Riahi K, Thomson A, Velders G JM, van Vuuren DPP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Chang 109(1):213.

    CAS  Article  Google Scholar 

  • Moghani, M, Archer, CL (2020) The impact of emissions and climate change on future ozone concentrations in the USA. Air Qual Atmos Health 13:1465–1476.

    Article  Google Scholar 

  • Monaghan AJ, Steinhoff DF, Bruyere CL, Yates D (2014) NCAR CESM global bias-corrected CMIP5 Output to Support WRF/MPAS Research

  • Nazarenko L, Schmidt GA, Miller RL, Tausnev N, Kelley M, Ruedy R, Russell GL, Aleinov I, Bauer M, Bauer S, Bleck R, Canuto V, Cheng Y, Clune TL, DelGenio AD, Faluvegi G, Hansen JE, Healy RJ, Kiang NY, Koch D, Lacis AA, LeGrande AN, Lerner J, Lo KK, Menon S, Oinas V, Perlwitz J, Puma MJ, Rind D, Romanou A, Sato M, Shindell DT, Sun S, Tsigaridis K, Unger N, Voulgarakis A, Yao M-S, Zhang J (2015) Future climate change under RCP emission scenarios with GISS M odelE2. J Adv Model Earth Syst 7(1):244–267.

    Article  Google Scholar 

  • Nolte CG, Spero TL, Bowden JH, Mallard MS, Dolwick PD (2018) The potential effects of climate change on air quality across the conterminous US at 2030 under three representative concentration pathways. Atmos Chem Phys Discuss

  • Nolte CG, Gilliland AB, Hogrefe C, Mickley LJ (2008) Linking global to regional models to assess future climate impacts on surface ozone levels in the United States. J Geophys Res Atmos 113(D14)

  • Penrod A, Zhang Y, Wang K, Wu S-Y, Leung LR (2014) Impacts of future climate and emission changes on U.S. air quality. Atmos Environ 89:533–547.

    CAS  Article  Google Scholar 

  • Ramboll Environ (2017) CAMx Support Software. (accessed: 2019-05-18)

  • Riahi K, Grubler A, Nakicenovic N (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecast Soc Chang 74 (7):887–935.

    Article  Google Scholar 

  • Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) Rcp 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Chang 109(1):33.

    CAS  Article  Google Scholar 

  • Skamarock WC, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227(7):3465–3485.

    Article  Google Scholar 

  • Stowell JD, min Kim Y, Gao Y, Fu JS, Chang HH, Liu Y (2017) The impact of climate change and emissions control on future ozone levels: implications for human health. Environ Int 108:41–50.

    CAS  Article  Google Scholar 

  • Trail M, Tsimpidi AP, Liu P, Tsigaridis K, Hu Y, Nenes A, Russell AG (2013) Downscaling a global climate model to simulate climate change impacts on US regional and urban air quality. Geosci Model Dev 6:1429–1445.

    Article  Google Scholar 

  • United States Environmental Protection Agency (2012) Our nation’s air: status and trends through 2010 report

  • United States Environmental Protection Agency (US EPA) (2014) Meteorological model performance for annual 2011 WRF V3.4 simulation

  • United States Environmental Protection Agency (USEPA) (2015) Technical support document: preparation of emissions inventories for the version 6.2, 2011 emissions modeling platform

  • United States Environmental Protection Agency (USEPA) (2016a) Air quality modeling technical support document for the 2015 ozone NAAQS preliminary interstate transport assessment. (accessed: 2019-06-05)

  • United States Environmental Protection Agency (USEPA) (2016) Climate change indicators: U.S. and global temperature

  • Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Chang 109(1-2):5–31.

    Article  Google Scholar 

  • Westervelt DM, Horowitz LW, Naik V, Tai A PK, Fiore AM, Mauzerall DL (2016) Quantifying PM2.5-meteorology sensitivities in a global climate model. Atmos Environ 142:43–56.

    CAS  Article  Google Scholar 

  • Yarwood G, Jung J, Whitten GZ, Heo G, Mellberg J, Estes M (2010) Updates to the carbon bond mechanism for version 6 (CB6)

  • Zhang Y, Bowden JH, Adelman Z, Naik V, Horowitz LW, Smith SJ, West JJ (2016) Co-benefits of global and regional greenhouse gas mitigation for US air quality in 2050. Atmos Chem Phys 16 (15):9533–9548.

    CAS  Article  Google Scholar 

Download references


This research was sponsored by the Delaware Department of Natural Resources and Environmental Control (DNREC), Division of Air Quality (DAQ), grant number 15A01141. In particular, the authors would like to acknowledge the support of Ali Mirzakhalili, former Director of DAQ at DNREC. The simulations were conducted on the Farber and Caviness high-performance computer clusters of the University of Delaware.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mojtaba Moghani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moghani, M., Archer, C.L. The impact of emissions and climate change on future ozone concentrations in the USA. Air Qual Atmos Health 13, 1465–1476 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Air pollution
  • Ozone
  • Air quality modeling
  • Climate change
  • Emissions