Exposure measurement error in air pollution studies: the impact of shared, multiplicative measurement error on epidemiological health risk estimates

Abstract

Spatiotemporal air pollution models are increasingly being used to estimate health effects in epidemiological studies. Although such exposure prediction models typically result in improved spatial and temporal resolution of air pollution predictions, they remain subject to shared measurement error, a type of measurement error common in spatiotemporal exposure models which occurs when measurement error is not independent of exposures. A fundamental challenge of exposure measurement error in air pollution assessment is the strong correlation and sometimes identical (shared) error of exposure estimates across geographic space and time. When exposure estimates with shared measurement error are used to estimate health risk in epidemiological analyses, complex errors are potentially introduced, resulting in biased epidemiological conclusions. We demonstrate the influence of using a three-stage spatiotemporal exposure prediction model and introduce formal methods of shared, multiplicative measurement error (SMME) correction of epidemiological health risk estimates. Using our three-stage ensemble learning-based nitrogen oxides (NOx) exposure prediction model, we quantified SMME. We conducted an epidemiological analysis of wheeze risk in relation to NOx exposure among school-aged children. To demonstrate the incremental influence of exposure modeling stage, we iteratively estimated the health risk using assigned exposure predictions from each stage of the NOx model. We then determined the impact of SMME on the variance of health risk estimates under various scenarios. Depending on the stage of the spatiotemporal exposure model used, we found that wheeze odds ratio ranged from 1.16 to 1.28 for an interquartile range increase in NOx. With each additional stage of exposure modeling, the health effect estimate moved further away from the null (OR = 1). When corrected for observed SMME, the health effects confidence intervals slightly lengthened, but our epidemiological conclusions were not altered. When the variance estimate was corrected for the potential “worst case scenario” of SMME, the standard error further increased, having a meaningful influence on epidemiological conclusions. Our framework can be expanded and used to understand the implications of using exposure predictions subject to shared measurement error in future health investigations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Agency UEP (2008) Integrated Science Assessment for Oxides of Nitrogen-Health Criteria. In.: National Center for Environmental Assessment, Office of Research and ….

  2. Bates DM, DebRoy S (2004) Linear mixed models and penalized least squares. J Multivar Anal 91(1):1–17

    Article  Google Scholar 

  3. Berhane K, Zhang Y, Linn WS, Rappaport EB, Bastain TM, Salam MT, Islam T, Lurmann F, Gilliland FD (2011) The effect of ambient air pollution on exhaled nitric oxide in the Children’s Health Study. Eur Respir J 37(5):1029–1036

    CAS  Article  Google Scholar 

  4. Beydoun MA, Kaufman JS, Ibrahim J, Satia JA, Heiss G (2007) Measurement error adjustment in essential fatty acid intake from a food frequency questionnaire: alternative approaches and methods. BMC Med Res Methodol 7(1):41

    Article  Google Scholar 

  5. Blackwell M, Honaker J, King G (2017) A unified approach to measurement error and missing data: overview and applications. Sociol Methods Res 46(3):303–341

    Article  Google Scholar 

  6. Butland BK, Samoli E, Atkinson RW, Barratt B, Katsouyanni K (2019) Measurement error in a multi-level analysis of air pollution and health: a simulation study. Environ Health 18(1):13

    Article  Google Scholar 

  7. Carroll R (2005) Measurement error in epidemiologic studies. Encyclopedia of Biostatistics. https://doi.org/10.1002/0470011815.b2a03082

  8. Chen Z, Salam MT, Eckel SP, Breton CV, Gilliland FD (2015) Chronic effects of air pollution on respiratory health in Southern California children: findings from the Southern California Children’s Health Study. J Thorac Dis 7(1):46

    Google Scholar 

  9. Escamilla-Nuñez M-C, Barraza-Villarreal A, Hernandez-Cadena L, Moreno-Macias H, Ramirez-Aguilar M, Sienra-Monge J-J, Cortez-Lugo M, Texcalac J-L, del Rio-Navarro B, Romieu I (2008) Traffic-related air pollution and respiratory symptoms among asthmatic children, resident in Mexico City: the EVA cohort study. Respir Res 9(1):74

    Article  Google Scholar 

  10. Gasana J, Dillikar D, Mendy A, Forno E, Vieira ER (2012) Motor vehicle air pollution and asthma in children: a meta-analysis. Environ Res 117:36–45

    CAS  Article  Google Scholar 

  11. Gauderman WJ, Avol E, Lurmann F, Kuenzli N, Gilliland F, Peters J, McConnell R (2005) Childhood asthma and exposure to traffic and nitrogen dioxide. Epidemiology:737–743

  12. Girguis MS, Li L, Lurmann F, Wu J, Urman R, Rappaport E, Breton C, Gilliland F, Stram D, Habre R (2019) Exposure measurement error in air pollution studies: A framework for assessing shared, multiplicative measurement error in ensemble learning estimates of nitrogen oxides. Environ Int 125:97–106

    CAS  Article  Google Scholar 

  13. Goldsmith CA, Kobzik L (1999) Particulate air pollution and asthma: a review of epidemiological and biological studies. Rev Environ Health 14(3):121–134

  14. Gryparis A, Paciorek CJ, Zeka A, Schwartz J, Coull BA (2008) Measurement error caused by spatial misalignment in environmental epidemiology. Biostatistics 10(2):258–274

    Article  Google Scholar 

  15. Hoffmann S, Laurier D, Rage E, Guihenneuc C, Ancelet S (2018) Shared and unshared exposure measurement error in occupational cohort studies and their effects on statistical inference in proportional hazards models. PloS one 13(2):e0190792

    Article  CAS  Google Scholar 

  16. Huque MH, Bondell HD, Ryan L (2014) On the impact of covariate measurement error on spatial regression modeling. Environmetrics 25(8):560–570

    Article  Google Scholar 

  17. Huque MH, Bondell HD, Carroll RJ, Ryan LM (2016) Spatial regression with covariate measurement error: A semiparametric approach. Biometrics 72(3):678–686

    Article  Google Scholar 

  18. Hwang B-F, Lee Y-L, Lin Y-C, Jaakkola JJ, Guo Y (2005) Traffic related air pollution as a determinant of asthma among Taiwanese school children. Thorax 60(6):467–473

    Article  Google Scholar 

  19. Islam T, Urman R, Gauderman WJ, Milam J, Lurmann F, Shankardass K, Avol E, Gilliland F, McConnell R (2011) Parental stress increases the detrimental effect of traffic exposure on children’s lung function. Am J Respir Crit Care Med 184(7):822–827

    Article  Google Scholar 

  20. Jafer AT, Mahmood AA, Fatah MA, Jasim MA (1991) Guidelines for the diagnosis and management of asthma

  21. Keller JP, Chang HH, Strickland MJ, Szpiro AA (2017) Measurement error correction for predicted spatiotemporal air pollution exposures. Epidemiology (Cambridge, Mass) 28(3):338

    Article  Google Scholar 

  22. Khreis H, Kelly C, Tate J, Parslow R, Lucas K, Nieuwenhuijsen M (n.d.) Exposure to traffic-related air pollution and risk of development of childhood asthma: A systematic review and meta-analysis. (1873–6750 (Electronic)). Jul-Sep;14(3):121–34

  23. Li Y, Guolo A, Hoffman FO, Carroll RJ (2007) Shared uncertainty in measurement error problems, with application to Nevada Test Site fallout data. Biometrics 63(4):1226–1236

    Article  Google Scholar 

  24. Li L, Lurmann F, Habre R, Urman R, Rappaport E, Ritz B, Chen J-C, Gilliland FD, Wu J (2017) Constrained Mixed-Effect Models with Ensemble Learning for Prediction of Nitrogen Oxides Concentrations at High Spatiotemporal Resolution. Environ Sci Technol 51(17):9920–9929

    CAS  Article  Google Scholar 

  25. Lyles RH, Kupper LL (1997) A detailed evaluation of adjustment methods for multiplicative measurement error in linear regression with applications in occupational epidemiology. Biometrics:1008–1025

  26. Mann JK, Balmes JR, Bruckner TA, Mortimer KM, Margolis HG, Pratt B, Hammond SK, Lurmann FW, Tager IB (2010) Short-term effects of air pollution on wheeze in asthmatic children in Fresno, California. Environ Health Perspect 118(10):1497–1502

    CAS  Article  Google Scholar 

  27. Martinati L, Boner A (1995) Clinical diagnosis of wheezing in early childhood. Allergy 50(9):701–710

    CAS  Article  Google Scholar 

  28. McConnell R, Berhane K, Yao L, Jerrett M, Lurmann F, Gilliland F, Künzli N, Gauderman J, Avol E, Thomas D (2006) Traffic, susceptibility, and childhood asthma. Environ Health Perspect 114(5):766–772

    CAS  Article  Google Scholar 

  29. Median Household Income in Past 12 Months (2005) (in 2005 Inflation-adjusted Dollars). In: American Community Survey 2005. vol. B19013. https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_05_EST_B19013&prodType=table: U.S. Census Bureau. Accessed 15 Dec 2018

  30. Navidi W, Lurmann F (1995) Measurement error in air pollution exposure assessment. J Expo Anal Environ Epidemiol 5(2):111–124

    CAS  Google Scholar 

  31. Organization WH (2004) Health aspects of air pollution: results from the WHO project“ Systematic review of health aspects of air pollution in Europe”. In.: Copenhagen: WHO Regional Office for Europe

  32. Ostro B, Lipsett M, Mann J, Braxton-Owens H, White M (2001) Air pollution and exacerbation of asthma in African-American children in Los Angeles. Epidemiology 12(2):200–208

    CAS  Article  Google Scholar 

  33. Peters JM, Avol E, Navidi W, London SJ, Gauderman WJ, Lurmann F, Linn WS, Margolis H, Rappaport E, Gong H Jr (1999) A study of twelve Southern California communities with differing levels and types of air pollution: I. Prevalence of respiratory morbidity. Am J Respir Crit Care Med 159(3):760–767

    CAS  Article  Google Scholar 

  34. Pollution HEIPotHEoT-RA (2010) Traffic-related air pollution: a critical review of the literature on emissions, exposure, and health effects: Health Effects Institute

  35. Reeves G, Cox D, Darby S, Whitley E (1998) Some aspects of measurement error in explanatory variables for continuous and binary regression models. Stat Med 17(19):2157–2177

    CAS  Article  Google Scholar 

  36. Russo A, Soares AO (2014) Hybrid model for urban air pollution forecasting: A stochastic spatio-temporal approach. Math Geosci 46(1):75–93

    CAS  Article  Google Scholar 

  37. Schwela D (n.d.) Air pollution and health in urban areas. (0048–7554 (Print)). Review. PubMed PMID: 10674285

  38. Spiegelman D, McDermott A, Rosner B (1997) Regression calibration method for correcting measurement-error bias in nutritional epidemiology. Am J Clin Nutr 65(4):1179S–1186S

    CAS  Article  Google Scholar 

  39. Stern DA, Morgan WJ, Halonen M, Wright AL, Martinez FD (2008) Wheezing and bronchial hyper-responsiveness in early childhood as predictors of newly diagnosed asthma in early adulthood: a longitudinal birth-cohort study. Lancet 372(9643):1058–1064

    Article  Google Scholar 

  40. Stram DO, Kopecky KJ (2003) Power and uncertainty analysis of epidemiological studies of radiation-related disease risk in which dose estimates are based on a complex dosimetry system: some observations. Radiat Res 160(4):408–417

    CAS  Article  Google Scholar 

  41. Stram DO, Preston DL, Sokolnikov M, Napier B, Kopecky KJ, Boice J, Beck H, Till J, Bouville A (2015) Shared dosimetry error in epidemiological dose-response analyses. PLoS One 10(3):e0119418

    Article  CAS  Google Scholar 

  42. Strickland MJ, Gass KM, Goldman GT, Mulholland JA (2015) Effects of ambient air pollution measurement error on health effect estimates in time-series studies: a simulation-based analysis. J Expo Sci Environ Epidemiol 25(2):160

    CAS  Article  Google Scholar 

  43. Szpiro AA, Paciorek CJ (2013) Measurement error in two-stage analyses, with application to air pollution epidemiology. Environmetrics 24(8):501–517

    Article  Google Scholar 

  44. Szpiro AA, Sampson PD, Sheppard L, Lumley T, Adar SD, Kaufman JD (2010) Predicting intra-urban variation in air pollution concentrations with complex spatio-temporal dependencies. Environmetrics 21(6):606–631

    CAS  Google Scholar 

  45. Szpiro AA, Paciorek CJ, Sheppard L (2011a) Does more accurate exposure prediction necessarily improve health effect estimates? Epidemiology (Cambridge, Mass) 22(5):680

    Article  Google Scholar 

  46. Szpiro AA, Sheppard L, Lumley T (2011b) Efficient measurement error correction with spatially misaligned data. Biostatistics 12(4):610–623

    Article  Google Scholar 

  47. Thomas D, Stram D, Dwyer J (1993) Exposure measurement error: influence on exposure-disease relationships and methods of correction. Annu Rev Public Health 14(1):69–93

    CAS  Article  Google Scholar 

  48. Tripathi P, Tripathi P, Kashyap L, Singh V (2007) The role of nitric oxide in inflammatory reactions. Pathog Dis 51(3):443–452

    CAS  Google Scholar 

  49. Urman R, McConnell R, Islam T, Avol EL, Lurmann FW, Vora H, Linn WS, Rappaport EB, Gilliland FD, Gauderman WJ (2014) Associations of children’s lung function with ambient air pollution: joint effects of regional and near-roadway pollutants. Thorax 69(6):540–547

    Article  Google Scholar 

  50. Yamazaki S, Shima M, Nakadate T, Ohara T, Omori T, Ono M, Sato T, Nitta H (2014) Association between traffic-related air pollution and development of asthma in school children: cohort study in Japan. J Expo Sci Environl Epidemiol 24(4):372–379

    CAS  Article  Google Scholar 

  51. Zeger S (2001) Correspondence: Correction: Exposure Measurement Error in Time-Series Air Pollution Studies. Environ Health Perspect 109(11):A517

    CAS  Article  Google Scholar 

  52. Zeger SL, Thomas D, Dominici F, Samet JM, Schwartz J, Dockery D, Cohen A (2000) Exposure measurement error in time-series studies of air pollution: concepts and consequences. Environ Health Perspect 108(5):419

    CAS  Article  Google Scholar 

  53. Zhang Z, Preston DL, Sokolnikov M, Napier BA, Degteva M, Moroz B, Vostrotin V, Shiskina E, Birchall A, Stram DO (2017) Correction of confidence intervals in excess relative risk models using Monte Carlo dosimetry systems with shared errors. PloS One 12(4):e0174641

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Institute of Health (NIH) grant 4UH3OD023287-03 and MADRES Center for Environmental Health Disparities (5P50ES026086-05). Additional support was provided by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) grant U54EB022002.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mariam S. Girguis.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 151 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Girguis, M.S., Li, L., Lurmann, F. et al. Exposure measurement error in air pollution studies: the impact of shared, multiplicative measurement error on epidemiological health risk estimates. Air Qual Atmos Health 13, 631–643 (2020). https://doi.org/10.1007/s11869-020-00826-6

Download citation

Keywords

  • Measurement error
  • Variance correction
  • Shared error