Abstract
A drastic decline of 2.4 ppbv decade−1 in the ozone mixing ratio has been measured in Santiago de Chile during the 2000s. Subsequently, in the 2010s, ozone trends stabilized in downtown and showed upward trends in eastern Santiago. The number of days with an 8-h average ozone mixing ratio above 61 ppbv, deemed harmful to health according to Chilean legislation, has declined significantly both in western and central Santiago. However, in eastern Santiago, one finds a 2010–2018 decade average of 43 days per year above recommended levels. Also, at a Receptor Site located ~ 70 km downwind from Santiago, this number rose to up to 3 months per year. A common denominator for the last two decades has been a steady increase in both gasoline and diesel-powered private cars. In the 2010s, the ozone weekend effect was frequently noted, providing evidence that the ozone formation regime in Santiago is VOC-limited. Nitrogen oxides and carbon monoxide (a proxy of anthropogenic VOCs) have increased steadily since 2014 in a relatively constant CO-to-NOx ratio. Therefore, we propose that primary emissions of NOX and VOCs from motor vehicle exhaust have remained as the main driver of the photochemical air pollution in Santiago as well as explaining the weekly variation. Santiago, like other megacities in the world, faces several challenges associated with increasing urbanization as well as the effects of climate change. An increasing population, growth in private car use, and urban sprawl have contributed to maintain high levels of ozone. New threats such as increasing temperatures observed in the central valleys of Chile, along with more frequent occurrences of heat waves, whose number has doubled in the last decade, will require a different approach to manage ozone pollution during the next decade. Santiago will not meet its own goals in the upcoming years without implementing robust, scientifically sound, and cost-effective strategies designed specifically to tackle photochemical pollution.
This is a preview of subscription content, access via your institution.









References
Atkinson R, Arey J (1998) Atmospheric chemistry of biogenic organic compounds. Acc Chem Res 31:574–583. https://doi.org/10.1021/ar970143z
Atkinson R, Arey J (2003) Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmos Environ 37:197–219. https://doi.org/10.1016/S1352-2310(03)00391-1
Ballester J, Rodó X, Giorgi F (2010) Future changes in Central Europe heat waves expected to mostly follow summer mean warming. Clim Dyn 35:1191–1205. https://doi.org/10.1007/s00382-009-0641-5
Barraza F, Lambert F, Jorquera H, Villalobos AM, Gallardo L (2017) Temporal evolution of main ambient PM2. 5 sources in Santiago, Chile, from 1998 to 2012. Atmos Chem Phys 17:10093–10107. https://doi.org/10.5194/acp-17-10093-2017
Bell ML, McDermott A, Zeger SL, Samet JM, Dominici F (2004) OZone and short-term mortality in 95 us urban communities, 1987-2000. JAMA 292:2372–2378. https://doi.org/10.1001/jama.292.19.2372
Boisier JP, Rondanelli R, Garreaud RD, Muñoz F (2016) Anthropogenic and natural contributions to the Southeast Pacific precipitation decline and recent megadrought in Central Chile. Geophys Res Lett 43:413–421. https://doi.org/10.1002/2015gl067265
Boisier JP, Alvarez-Garretón C, Cordero RR, Damiani A, Gallardo L, Garreaud RD, Lambert F, Ramallo C, Rojas M, Rondanelli R (2018) Anthropogenic drying in Central-Southern Chile evidenced by long-term observations and climate model simulations. Elem Sci Anth 6(1):74. https://doi.org/10.1525/elementa.328
Bozkurt D, Rojas M, Boisier JP, Rondanelli R, Garreaud R, Gallardo L (2019) Dynamical downscaling over the complex terrain of southwest South America: present climate conditions and added value analysis. Clim Dyn 53:6745–6767. https://doi.org/10.1007/s00382-019-04959-y
Carslaw DC (2013) The Openair manual: open-source tools for analyzing air pollution data. Manual for version 0.9. King’s College London. London, UK. [WWW document] URL https://goo.gl/iigCI9 (accessed 5 January 2018)
de la Barrera F, Barraza F, Favier P, Ruiz V, Quense J (2018) Megafires in Chile 2017: Monitoring multiscale environmental impacts of burned ecosystems. Sci Total Environ 637-638:1526–1536. https://doi.org/10.1016/j.scitotenv.2018.05.119
DMC (2018) Reporte meteorológico available at: https://climatologia.meteochile.gob.cl/application/publicaciones/reporteClimatologico/2018. Accessed 1 Nov 2019
Elshorbany YF et al (2009) Summertime photochemical ozone formation in Santiago. Chile Atmos Environ 43:6398–6407. https://doi.org/10.1016/j.atmosenv.2009.08.047
Elshorbany YF et al (2010) Seasonal dependence of the oxidation capacity of the city of Santiago de Chile. Atmos Environ 44:5383–5394. https://doi.org/10.1016/j.atmosenv.2009.08.036
Entwistle MR, Gharibi H, Tavallali P, Cisneros R, Schweizer D, Brown P, Ha S (2019) Ozone pollution and asthma emergency department visits in Fresno, CA, USA, during the warm season (June–September) of the years 2005 to 2015: a time-stratified case-crossover analysis. Air Qual Atmos Health 12:661–672. https://doi.org/10.1007/s11869-019-00685-w
Falvey M, Garreaud RD (2009) Regional cooling in a warming world: recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006). J Geophys Res: Atmospheres 114 doi:https://doi.org/10.1029/2008jd010519
Gallardo L, Olivares G, Langner J, Aarhus B (2002) Coastal lows and sulfur air pollution in Central Chile. Atmos Environ 36:3829–3841. https://doi.org/10.1016/S1352-2310(02)00285-6
Gallardo L, Barraza F, Ceballos A, Galleguillos M, Huneeus N, Lambert F, Ibarra C, Munizaga M, O'Ryan R, Osses M, Tolvett S, Urquiza A, Véliz KD (2018) Evolution of air quality in Santiago: the role of mobility and lessons from the science-policy interface. Elem Sci Anth 6(1):38. https://doi.org/10.1525/elementa.293
Garreaud R, Rutllant J, Fuenzalida H (2002) Coastal lows along the subtropical west coast of South America: mean structure and evolution. Mon Weather Rev 130:75–88. https://doi.org/10.1175/1520-0493(2002)130<0075:clatsw>2.0.co;2
Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate Palaeogeography. Palaeoclimatol Palaeoecol 281:180–195. https://doi.org/10.1016/j.palaeo.2007.10.032
GBD (2016) Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017 390:1345–1422
Goldstein AH, Galbally IE (2007) Known and unexplored organic constituents in the Earth's. Atmos Environ Sci Technol 41:1514–1521. https://doi.org/10.1021/es072476p
Jimenez JL, Canagaratna MR, Donahue NM, Prevot AS, Zhang Q, Kroll JH, DeCarlo P, Allan JD, Coe H, Ng NL, Aiken AC, Docherty KS, Ulbrich IM, Grieshop AP, Robinson AL, Duplissy J, Smith JD, Wilson KR, Lanz VA, Hueglin C, Sun YL, Tian J, Laaksonen A, Raatikainen T, Rautiainen J, Vaattovaara P, Ehn M, Kulmala M, Tomlinson JM, Collins DR, Cubison MJ, Dunlea EJ, Huffman JA, Onasch TB, Alfarra MR, Williams PI, Bower K, Kondo Y, Schneider J, Drewnick F, Borrmann S, Weimer S, Demerjian K, Salcedo D, Cottrell L, Griffin R, Takami A, Miyoshi T, Hatakeyama S, Shimono A, Sun JY, Zhang YM, Dzepina K, Kimmel JR, Sueper D, Jayne JT, Herndon SC, Trimborn AM, Williams LR, Wood EC, Middlebrook AM, Kolb CE, Baltensperger U, Worsnop DR (2009) Evolution of organic aerosols in the atmosphere. Science 326:1525–1529. https://doi.org/10.1126/science.1180353
Lee JD et al (2006) Ozone photochemistry and elevated isoprene during the UK heatwave of august 2003. Atmos Environ 40:7598–7613. https://doi.org/10.1016/j.atmosenv.2006.06.057
Lefohn AS, Runeckles VC (1987) Establishing standards to protect vegetation—ozone exposure/dose considerations. Atmos Environ (1967) 21:561–568. https://doi.org/10.1016/0004-6981(87)90038-2
Lippmann M (1991) Health effects of tropospheric ozone. Environ Sci Technol 25:1954–1962. https://doi.org/10.1021/es00024a001
Liu JC, Peng RD (2018) Health effect of mixtures of ozone, nitrogen dioxide, and fine particulates in 85 US counties. Air Qual Atmos Health. https://doi.org/10.1007/s11869-017-0544-2
Mazzeo A et al (2018) Impact of residential combustion and transport emissions on air pollution in Santiago during winter. Atmos Environ 190:195–208. https://doi.org/10.1016/j.atmosenv.2018.06.043
McConnell R, Berhane K, Gilliland F, London SJ, Islam T, Gauderman WJ, Avol E, Margolis HG, Peters JM (2002) Asthma in exercising children exposed to ozone: a cohort study. Lancet 359:386–391
Mena-Carrasco M et al (2014) Regional climate feedbacks in Central Chile and their effect on air quality episodes and meteorology. Urban Clim 10:771–781. https://doi.org/10.1016/j.uclim.2014.06.006
Mills G, Pleijel H, Malley CS, Sinha B, Cooper OR, Schultz MG, Neufeld HS, Simpson D, Sharps K, Feng Z, Gerosa G, Harmens H, Kobayashi K, Saxena P, Paoletti E, Sinha V, Xu X (2018) Tropospheric ozone assessment report: present-day tropospheric ozone distribution and trends relevant to vegetation. Elem Sci Anth 6(1):47. https://doi.org/10.1525/elementa.302
NRC (1983) Acid deposition: atmospheric processes in Eastern North America. National Academy Press, Washington
Osses A, Gallardo L, Faundez T (2013) Analysis and evolution of air quality monitoring networks using combined statistical information indexes. Tellus Ser B Chem Phys Meteorol 65:19822. https://doi.org/10.3402/tellusb.v65i0.19822
Paasonen P et al (2013) Warming-induced increase in aerosol number concentration likely to moderate climate change. Nat Geosci 6:438. https://doi.org/10.1038/ngeo1800 https://www.nature.com/articles/ngeo1800#supplementary-information
Piticar A (2018) Changes in heat waves in Chile. Glob Planet Chang 169:234–246. https://doi.org/10.1016/j.gloplacha.2018.08.007
Préndez M, Carvajal V, Corada K, Morales J, Alarcón F, Peralta H (2013) Biogenic volatile organic compounds from the urban forest of the Metropolitan Region. Chile Environ Poll 183:143–150. https://doi.org/10.1016/j.envpol.2013.04.003
Rappenglück B, Oyola P, Olaeta I, Fabian P (2000) The evolution of photochemical smog in the Metropolitan Area of Santiago de Chile. J Appl Meteorol 39:275–290. https://doi.org/10.1175/1520-0450(2000)039<0275:TEOPSI>2.0.CO;2
Rappenglück B et al (2005) An urban photochemistry study in Santiago de Chile. Atmos Environ 39:2913–2931. https://doi.org/10.1016/j.atmosenv.2004.12.049
Rubio M, Oyola P, Gramsch E, Lissi E, Pizarro J, Villena G (2004) Ozone and peroxyacetylnitrate in downtown Santiago. Chile Atmos Environ 38:4931–4939. https://doi.org/10.1016/j.atmosenv.2004.05.051
Russo S et al (2014) Magnitude of extreme heat waves in present climate and their projection in a warming world. J Geophys Res-Atmos 119:12,500–512,512. https://doi.org/10.1002/2014jd022098
Saide PE, Carmichael GR, Spak SN, Gallardo L, Osses AE, Mena-Carrasco MA, Pagowski M (2011) Forecasting urban PM10 and PM2.5 pollution episodes in very stable nocturnal conditions and complex terrain using WRF–Chem CO tracer model. Atmos Environ 45:2769–2780. https://doi.org/10.1016/j.atmosenv.2011.02.001
Schultz MG et al (2017) Tropospheric ozone assessment report: database and metrics data of global surface ozone observations. Elem Sci Anth 5:58. https://doi.org/10.1525/elementa.244
Scott CE, Arnold SR, Monks SA, Asmi A, Paasonen P, Spracklen DV (2018) Substantial large-scale feedbacks between natural aerosols and climate. Nat Geosci 11:44–48. https://doi.org/10.1038/s41561-017-0020-5
Seguel RJ, Morales R, Leiva M (2009) Estimations of primary and secondary organic carbon formation in PM2.5 aerosols of Santiago City, Chile. Atmos Environ 43:2125–2131. https://doi.org/10.1016/j.atmosenv.2009.01.029
Seguel RJ, Morales SR, Leiva GM (2012) Ozone weekend effect in Santiago. Chile Environ Pollut 162:72–79. https://doi.org/10.1016/j.envpol.2011.10.019
Seguel RJ, Mancilla C, Rondanelli R, Leiva M, Morales R (2013) Ozone distribution in the lower troposphere over complex terrain in Central Chile. J Geophys Res-Atmos 118:2966–2980. https://doi.org/10.1002/jgrd.50293
Seguel RJ, Mancilla C, MAL G (2018) Stratospheric ozone intrusions during the passage of cold fronts over Central Chile. Air Qual Atmos Health 11:535–548. 1–14. https://doi.org/10.1007/s11869-018-0558-4
Shrivastava M et al (2017) Recent advances in understanding secondary organic aerosol: implications for global climate forcing. Rev Geophys 55:509–559. https://doi.org/10.1002/2016rg000540
Toro R, Donoso C, Seguel R, Morales RES, Leiva MG (2014) Photochemical ozone pollution in the Valparaiso Region, Chile. Air Qual Atmos Health 7:1–11. https://doi.org/10.1007/s11869-013-0218-7
Toro AR, Seguel R, Morales SRE, Leiva GM (2015) Ozone, nitrogen oxides, and volatile organic compounds in a central zone of Chile. Air Qual Atmos Health 8:545–557 1-13. https://doi.org/10.1007/s11869-014-0306-3
Tsigaridis K, Kanakidou M (2018) The present and future of secondary organic aerosol direct forcing on climate. Curr Clim Change Rep 4:84–98. https://doi.org/10.1007/s40641-018-0092-3
US Federal Register. (2015) National Ambient Air Quality Standards for Ozone, 40 CFR Part 50, 51, 52, 53, and 58, 65292–65468
USACH (2014) Actualización y sistematización del inventario de emisiones de contaminantes atmosféricos en la Región Metropolitana. Ministerio de medio Ambiente. Available at: http://metadatos.mma.gob.cl/servicios/metadata/recursos/downloadRecurso/324084/USACH_Inf_Inventarios_FINAL.pdf. Accessed 1 Nov 2019
Van Dingenen R, Dentener FJ, Raes F, Krol MC, Emberson L, Cofala J (2009) The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos Environ 43:604–618. https://doi.org/10.1016/j.atmosenv.2008.10.033
Funding
This work has been funded by ANID/FONDAP/15110009 and PAPILA (Prediction of Air Pollution in Latin America and the Caribbean) project (ID: 777544, H2020-EU.1.3.3.).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Seguel, R.J., Gallardo, L., Fleming, Z.L. et al. Two decades of ozone standard exceedances in Santiago de Chile. Air Qual Atmos Health 13, 593–605 (2020). https://doi.org/10.1007/s11869-020-00822-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11869-020-00822-w
Keywords
- Ozone
- Nitrogen dioxide
- Photochemical pollution
- Heat waves
- Santiago